
www.manaraa.com

NORTHWESTERN UNIVERSITY

Analytics for Airline Revenue Management and Irregular Operations

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Industrial Engineering and Management Sciences

By

Bill Pun (Chan Seng Pun)

EVANSTON, ILLINOIS

June 2013



www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted.  Also,  if material had to be removed, 

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

UMI  3563831
Published by ProQuest LLC (2013).  Copyright in the Dissertation held by the Author.

UMI Number:  3563831



www.manaraa.com

2

c© Copyright by Bill Pun (Chan Seng Pun) 2013

All Rights Reserved



www.manaraa.com

3

To my dearest parents

Pun Wai and Chan Hang Chon

and my lovely sisters

Pun Lei Chi and Pun Ieng Ieng

for their endless patience and unconditioned love.



www.manaraa.com

4

ABSTRACT

Analytics for Airline Revenue Management and Irregular Operations

Bill Pun (Chan Seng Pun)

In this dissertation, we study problems in both revenue management (RM) and irregular operations re-

covery. The first chapter is devoted to RM in airline passenger. We consider a problem that allocates seats

to fare classes, and captures capacity nesting and customer upsell. While capacity nesting allows airlines

to sell seats allocated to low-yield classes to high-yield passengers, customer upsell allows low-yield pas-

sengers to purchase seats reserved for high-yield classes. We adopt an approximate dynamic programming

algorithm to iteratively approximate the complicated objective function with piecewise linear functions. We

observe that the resulting allocation policy outperforms a popular bid-price policy up to 35% when demand

and upsell probability are high.

The second chapter is about RM in air cargo. We study the underlying capacity allocation problem in

the mid-term capacity allocation process, in which shippers bid flight capacity on multiple flights to receive

discounted shipping rates and guaranteed space. The model minimizes demand covariance between the

bids and future volatile free-sales demand subject to a revenue lower bound and all necessary allocation

requirements. Due to its complexity, we decompose the problem by a flight partition and a set of demand

clusters. We show using simulation that our partitioning algorithm is robust, and the resulting allocation

increases revenue by 2% if the revenue lower bound is high and demand covariance is captured.

In the final chapter, we study a fully integrated recovery problem that recovers disrupted flight schedules

by iteratively and simultaneously recovering resources (aircraft, crews, and passengers). The problem is

solved by Benders decomposition, where the master problem is an extended fleet assignment problem, and

the subproblems are the resource recovery problems. Several decomposition and algorithmic strategies are

developed to reduce the total running time. We show that our solution can outperform a partially integrated

solution used in practice by as much as 8%, which accounts for one million dollars in saving per disruption.



www.manaraa.com

5

ACKNOWLEDGEMENTS

I would like to thank my dissertation advisor Diego Klabjan for his guidance and patience in supervising

this dissertation, which would not have been possible without his assistance.

I would like to express my gratitude to Fikri Karaesmen, Seyed Iravani, and Irina Dolinskaya for joining

my dissertation committee and offering generous support over the years.

I am very grateful to have the opportunities to work with revenue management professionals: Sergey

Shebalov, Jamison Graff, and Raja Kasilingam. Especially, I am indebted to Dr. Shebalov, who provided me

many insightful comments that help improve the quality of my first and last chapters, and invited me to join

him at Sabre Holdings to work on revenue management problems. My gratitude is also toward Dr. Graff,

who sent me to JDA’s clients around the global to learn their cargo systems. I also thank Dr. Kasilingam for

sharing his expertise in cargo revenue management while I was in Hong Kong.

I would like to express my gratitude to Steve Golbeck, my fantastic roommate since the day I passed

my Ph.D. entrance exam. Although the apartment was out of shape ever since we moved in, without him

keeping it minimally functional, my off-campus life could have been a disaster.

I owe sincere and earnest thankfulness to Joanna Wu and Zi Yang, two of my best friends in Chicago

who dragged me from my office and shared a lot of happy moments together. I also particularly thank Luis

Guimarães and Frank Schneider. Although they only stayed in Chicago for a relatively short period of time,

they colored my off-campus life in many different ways.

I am obliged to many of my colleagues, who share their lives with me and patiently listen to my com-

plaints when things did not go smoothly. Especially, I want to thank Geng Yue for all the moments that we

passed together and the helps that I received.

Last but not least, I express my greatness gratitude to my lifelong best friends U Sio Chong and Julieta

Guerreiro, who grow up with me and have been spiritually supporting me all these years.



www.manaraa.com

6

CONTENTS

Contents 6

List of Tables 9

List of Figures 10

1 Itinerary-Based Control with Nesting and Upsell 13

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Overview of Revenue Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Itinerary-based Allocation Model with Nesting and Upsell . . . . . . . . . . . . . . . . . . 21

1.4 Solution Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Asymptotic Property of Nested Allocation Policy . . . . . . . . . . . . . . . . . . . . . . . 29

1.6 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.6.1 Single Leg Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.6.2 Medium-Size Airline Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2 Air Cargo Allotment Planning 44

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Solution Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.1 Risk Neutral Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3.2 Problem Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3.3 Portfolio Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



www.manaraa.com

CONTENTS 7

2.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5 Computational Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5.1 Historical Shipment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5.3 CAP Optimization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Airline Integrated Recovery 69

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.2.1 Schedule Recovery Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.2 Aircraft Recovery Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.3 Crew Recovery Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.4 Passenger Recovery Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 Benders Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.1 Flight Copy Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.2 Crew Roster Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.5 Computational Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A Chapter 1: Appendix 104

A.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.1.1 Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.1.2 Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.1.3 Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.2.1 Upsell Revenue Estimation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.2.2 Margin Estimation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A.2.3 EMSR-upsell Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



www.manaraa.com

CONTENTS 8

A.3 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

B Chapter 2: Appendix 114

B.1 Rolling Horizon Implementation of the Risk Neutral Problem . . . . . . . . . . . . . . . . . 114



www.manaraa.com

9

LIST OF TABLES

1.1 Model Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2 Simulation settings for two/three/four/five-class examples . . . . . . . . . . . . . . . . . . . . . 34

1.3 Average relative optimality gap based on EMSR-d. . . . . . . . . . . . . . . . . . . . . . . . . 37

1.4 Average percentage of running time based on EMSR-d . . . . . . . . . . . . . . . . . . . . . . 37

1.5 Summary of the medium airline network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1 Performance summary when historical shipment records are directly applied. . . . . . . . . . . 63

3.1 Single-hub closure scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2 Important cost parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.1 Average running time of the upsell heuristic and the associated demand factor . . . . . . . . . . 112

A.2 Minimum, average, and maximum demand factors over all flights for different demand multipliers112

A.3 Average percentage of revenue improvement by using the nested allocation policy. . . . . . . . . 113



www.manaraa.com

10

LIST OF FIGURES

1.1 Flow chart of simulation at time T , the first reading day. . . . . . . . . . . . . . . . . . . . . . 33

1.2 Optimality gap comparisons for two/three/four/five classes. . . . . . . . . . . . . . . . . . . . . 35

1.3 Percentage of the running time of DP for two/three/four/five classes from left to right, smaller

the better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.4 The marginal revenue curves for a four-class example (left) and a fifteen-class example (right). . 38

1.5 Percentage of revenue improvement against upsell probability multiplier when upsell probabil-

ities are forecasted accurately. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.6 Percentage of revenue improvement against moptimization
2 when m1 = 0 and msimulation

2 ≤ 0.4 . 42

1.7 Percentage of revenue improvement against moptimization
3 when m1 = 0 and msimulation

3 ≥ 0.5 . 42

1.8 Average running time of the ADP algorithm in minute. . . . . . . . . . . . . . . . . . . . . . . 42

2.1 The mid-term allocation process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Proposed algorithmic framework for problem decomposition. . . . . . . . . . . . . . . . . . . . 55

2.3 Simulator for Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.4 Revenue collecting process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5 Average percentage of revenue change over RNP . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.6 Average percentage change of overtendered weight . . . . . . . . . . . . . . . . . . . . . . . . 66

2.7 Average percentage change of underutilized weight . . . . . . . . . . . . . . . . . . . . . . . . 66

2.8 Percentage of revenue reduced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.9 Percentage of covariance reduced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1 Benders decomposition for integrated recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Benders decomposition for integrated recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Roster generation process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4 Percentages of revenue improvements for the SRM, ARM, CRM, integrated system. . . . . . . . 94

3.5 Number of canceled flights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



www.manaraa.com

LIST OF FIGURES 11

3.6 Number of disrupted crews. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.7 Percentage of delayed passengers and canceled itineraries. . . . . . . . . . . . . . . . . . . . . 96

3.8 Percentage of deadheads reduced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.9 Running time comparisons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.10 Results for different cost settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.11 Percentage of revenue improvement when the recovery time window is limited to 12 hours. . . . 98



www.manaraa.com

12

LIST OF ALGORITHMS

1 ADP Algorithm to approximate U sp1(K) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Upsell heuristic to approximate U sp2
i (yi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Flight-based Partitioning Heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Rolling Horizon BFSPQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Upsell revenue estimation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Margin estimation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 EMSR-upsell algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



www.manaraa.com

13

Chapter 1

ITINERARY-BASED CONTROL WITH

NESTING AND UPSELL

In order to accept future high-yield booking requests, airlines protect seats from low-

yield passengers. More seats should be reserved when passengers faced with closed

fare classes can upsell to open higher fare classes. We address the airline revenue

management problem with capacity nesting and customer upsell, and formulate it as a

stochastic optimization problem to determine a set of static protection levels for each

itinerary. We apply approximate dynamic programming to approximate the objective

function by piecewise linear functions, whose slopes (corresponding to marginal

revenues) are iteratively updated and produced by a sophisticated heuristic that simul-

taneously handles both nesting and upsell. The resulting allocation policy is tested on

a real airline network and benchmarked against the randomized linear programming

bid-price policy under various demand settings. Simulation results suggest that the

proposed allocation policy significantly outperforms when incremental demand and

upsell probability are high.

Key words: network revenue management, capacity nesting, customer upsell,

approximate dynamic programming

1.1 INTRODUCTION

Airline Revenue Management (RM) is about making a decision whether or not a booking request should

be accepted for a seat in a given fare class at a particular point in time. If the request is accepted, the



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 14

revenue is immediately collected. Otherwise, the airline reserves the seat for a passenger who might book

in the near future and pay a higher fare. In short, the goal of RM is to maximize revenue by managing a

capacity-constrained flight network. An RM control policy for such a purpose is often constructed based on

the primal and/or dual solutions of a resource allocation problem. Constructing a good control policy has

been an interesting topic to both practitioners and researchers for decades. Challenges are mainly due to

the size of the flight network, the dynamic nature of the airline business, and the stochastic booking behav-

iors of passengers. These challenges motivate the airline industry to develop efficient and well-performed

heuristics.

At the beginning of the decision process, an underlying optimization problem allocates seats to passenger

classes before passengers start booking, and it is typically resolved later during the booking process. By

allocating seats to each class appropriately, seats that could be sold at higher fares can be protected from

low-yield passengers who usually book their tickets months in advance. In practice, instead of using the

allocation solution as is, allocated seats are nested over fare classes to set up protection levels, so that airlines

can sell empty seats allocated to low-yield classes at a higher fare to high-yield passengers whose classes

are fully booked. Furthermore, when it is profitable to do so, airlines adjust the allocation to recapture low-

yield passengers at a higher fare by prematurely closing their corresponding low-yield classes. These are

capacity nesting and customer upsell, which are two commonly discussed and desired features of the airline

RM problem. In this paper, we refer to the allocation solution without nesting as the partitioned allocation

policy, and the derived protection levels as the nested allocation policy.

A popular alternative control policy to the partitioned and nested allocation policies mentioned above

is bid-price policy, which consists of a threshold price (bid price) for each itinerary. A booking request

from a passenger paying a fare above the bid price is accepted given the itinerary is open. In practice, the

optimal bid price is approximated by summing the (approximated) marginal revenue of a seat over all flights

in the itinerary. Lastly, by assuming a relationship between the passenger population and fare level (price

elasticity), the fare can be adjusted to achieve a similar capacity protection effect. For more details, we

refer the reader to Williamson (1992) and Talluri and van Ryzin (1998) for bid prices, Bitran and Caldentey

(2003) for pricing solutions, de Boer et al. (2002) for numerical experiments, and McGill and Van Ryzin

(1999) for a comprehensive review of RM.

Although the bid-price policy has been extensively studied, the traditional seat allocation policy remains

popular. It is due to the fact that many existing RM systems are built to handle allocation policies for their



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 15

capability to include customer behavior (cancellation, no-show, and upsell) more intuitively and to provide

a more granular control over the network. With the ever tightening revenue margin nowadays, capturing

customer behavior is vital to the prosperity of the airlines.

In practice, bid-prices are used not as a control policy but as means to prorate itinerary fares and to

decompose the flight network during the pre-optimization phase, where the marginal revenue of a seat is

approximated by a dual solution of a relaxed seat allocation model. After the fares are prorated, virtual

classes are defined at the flight level and mapped to the original fare classes. The protection level for each

virtual class is then determined by an efficient leg-based heuristic that captures customer behavior. Our

work simplifies existing allocation-based RM systems by eliminating both the use of a proration scheme

and the need of defining virtual classes. It also provides an allocation policy that requires no changes in

management practice.

In this paper, we model the network RM problem as a stochastic programming problem under the as-

sumption that low-yield passengers book first. The problem is similar to a two-stage stochastic programming

problem. It first maximizes revenue by allocating seats to each itinerary subject to flight capacity. Then,

given an allocation level and demand realization for each itinerary, sales are maximized by distributing the

allocated seats to each fare class while considering nesting and upsell.

The problem is solved by an approximate dynamic programming (ADP) algorithm that we developed to

approximate the complicated objective function by piecewise linear functions. The slopes for each piecewise

linear function are estimated by a sophisticated heuristic that locally adjusts class-level seat allocation given

new demand information. In addition, when upsells can be ignored, we show that our model is the same

as the model in Curry (1990), and the nested allocation policy, similar to the partitioned allocation policy,

enjoys the asymptotic optimality in Cooper (2002).

Simulation results on a medium airline network using a real-world dataset are discussed. Sensitivity

analyses are conducted to evaluate the performance of the nested allocation policy by varying demand mag-

nitudes and upsell probabilities. When both demand and upsell probability are high, we observe that the

proposed allocation policy significantly outperforms the RLP bid price policy in Talluri and Van Ryzin

(1999).

Our contributions are the following.

1. We provide a new stochastic programming formulation to model the network RM problem which

considers both capacity nesting and customer upsell at the itinerary level.



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 16

2. We revisit the itinerary-based network RM problem, extend it, expose its algorithmic structure, and

solved it with a parallelizable ADP algorithm that approximates the complicated objective function.

Our method does not require the use of fare proration or virtual classes, and returns a static allocation

policy that can be easily stored and implemented.

3. We devise a sophisticated heuristic that serves as the core of the ADP algorithm. Given the number

of seats available to an itinerary, it approximates the set of protection levels and the associated seat

margin. We numerically show that it significantly outperforms the choice-based EMSR heuristic by

Gallego et al. (2009) when the number of fare classes is high.

4. We justify the use of the nested allocation policy by revealing its asymptotic optimality when both

capacity and demand increase, and no upsell is considered.

5. We benchmark our allocation policy against the RLP bid-price policy and provide a comprehensive

numerical study to evaluate the performance of the nested allocation policy when demand is scaled

and when upsell probabilities cannot be accurately estimated, a common problem in practice.

We outline our paper as follows. Section 1.2 provides a general overview on several well-known seat

allocation models. Section 1.3 presents our itinerary-based nesting model with upsell, and Section 1.4

elaborates the approximate dynamic programming algorithm that we apply to solve our problem. Several

other heuristics and algorithms are also presented. Section 1.5 discusses asymptotic optimality of the nested

allocation policy when no upsell is considered. Section 1.6 reports simulation results, and Section 1.7

concludes the paper.

1.1.1 LITERATURE REVIEW

We briefly discuss previous work closely related to our material. Starting with two passenger classes de-

fined by their fares, Littlewood (1972) derives the optimality condition to determine the optimal protec-

tion level for the lowest fare class when its passengers book first. Brumelle and McGill (1993), Curry

(1990), and Wollmer (1992) independently generalize the optimality condition to multiple classes. While

Wollmer (1992) handles discrete demand, Curry (1990) assumes continuous demand, and Brumelle and

McGill (1993) is applicable to both. Furthermore, Curry (1990) proposes a two-step optimization procedure

to obtain protection levels at the itinerary level. While we also consider the RM problem at the itinerary

level, we formulate the problem as a stochastic programming problem and extend it to capture upsells.

A stochastic approximation algorithm is proposed by van Ryzin and McGill (2000) to approximate



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 17

optimal protection levels. Their assumptions are the same as those in Brumelle and McGill (1993) that

bookings are independent and arrive in a low-to-high fare order. The algorithm does not rely on an apriori

distribution and provably converges to optimality. However, their algorithm is single leg, and hence, does

not capture the network effect.

Higle (2007) models the seat allocation problem as two-stage stochastic programming problem. Her

model captures demand at the origin-destination level and determines protection levels at the flight level.

Our model is similar, but it captures both nesting and upsell at the itinerary level. Also, we do not require

classes to be defined at the network level (across itineraries), which is nontrivial and required in her model

for her flight-level nesting scheme to work.

Taking the two-stage framework one step further, Chen and Homem-de-Mello (2010) model the net-

work RM problem as a multi-stage stochastic programming problem. However, doing so rises tractability

concerns, and they do not capture upsell.

Recent attentions have been given to integrating customer upsell with traditional revenue management

models. Fiig et al. (2010) derive a fare adjustment scheme to handle discrete choice models. The scheme

was tested by a passenger origin-destination simulator. Gallego et al. (2009) develop several choice-based

expected marginal seat revenue (EMSR) algorithms for a problem with multinomial logit (MNL) demand.

They show superior performances over both EMSR-w with upsell from Belobaba and Weatherford (1996)

and an adapted version of Fiig et al. (2010). We compare our algorithm directly with their path independent

choice-based EMSR algorithm and achieve a significantly higher revenue when the number of fare classes

increases.

Zhang and Adelman (2009) propose the use of approximate dynamic programming to solve the network

RM problem with customer choice. They provide multiple bounding results and a column generation al-

gorithm to handle the MNL choice model with a requirement that product sets are disjoint over customer

segments. Their model estimates the set of products to sell instead of a set of seats to protect. Different

from us, they assume one passenger per arrival, approximate the optimal DP directly with a math pro-

gramming problem, and focus on the flight-level bid-price control. Nonetheless, it is non-trivial to extend

their approach to capture more than one passenger in between two time periods, and their model cannot be

parallelized to exploit nowadays multi-core computing environment.



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 18

1.2 OVERVIEW OF REVENUE MANAGEMENT

We define the following sets and parameters:

• T set of time periods (reading days),

• F set of flights,

• I set of itineraries,

• If set of itineraries that uses flight f ,

• Fi set of flights in itinerary i,

• Ci = {1, 2, . . . , |Ci|} set of fare classes on itinerary i ordered by fares with 1 referring to the full fare

class,

• J = {(i, c)}c∈Ci,i∈I set of products (itinerary-fare combinations),

• Jf set of products that uses flight f ,

• rj fare of product j,

• Djt random variable that represents the number of booking requests for product j at time t,

• djt realization of Djt,

• Kf number of available seats on flight f ,

• Πj protection level for product j, where a protection level for a product is the total number of seats

reserved for all strictly higher classes.

Decision variables are defined as follows:

• yi number of seats allocated to itinerary i,

• xic number of seats reserved for class c on itinerary i, and

• zic number of empty seats extracted from all lower and equal classes to class c on itinerary i.

We often use j and (i, c) as subscripts interchangeably. If demand is aggregated over all time periods,

or each class of demand has a designated arrival time period, then the subscript to time t is ignored. Any

multidimensional quantity is denoted in bold. A superscript ∗ denotes the optimal objective value of a

problem. A subscript of a multi-dimensional quantity refers to the sliced set in the subscripted dimension,

e.g. Πi = {Πi1, . . . ,Πi|Ci|} is the set of protection levels for all classes on itinerary i. Minimum and

maximum operations are assumed component-wise, and (·)+ represents max{·, 0}. For ease of notation,



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 19

we define Πc
i = {Πi1, ...,Πic} to be the set of protection levels for fare classes with a fare at least ric.

Additionally, let K = {K1, ...,K|F |} be the set of flight capacity. We define the set of feasible itinerary-

level allocations by

I(K) =

⎧⎨
⎩y :

∑
i∈If

yi ≤ Kf for f ∈ F and yi ∈ � for i ∈ I

⎫⎬
⎭ ,

and the set of feasible product-level allocations by

J (K) =

⎧⎨
⎩x :

∑
j∈Jf

xj ≤ Kf for f ∈ F and xj ∈ � for j ∈ J

⎫⎬
⎭ .

The summation in I(K) or J (K) represents the requirement that the total allocation to itinerary or product

cannot exceed the number of seats available on each flight. Additionally, we define the allocation policy

mapping function by

P(Πi, yi) = {xi : xic = min{yi,Πic} −Πic−1 for c ∈ Ci} ,

which maps a set of protection levels to a partitioned (non-nested) allocation given the total number of seats

available to an itinerary. It converts a nested allocation policy to a partitioned allocation policy. Similarly,

we define the inverse mapping by

N (xi) =

⎧⎨
⎩(Πi, yi) : Πic =

∑
c′≤c

xic′ for c ∈ Ci, yi =
∑
c∈Ci

xic

⎫⎬
⎭ ,

which takes the class-level allocation and computes the corresponding set of protection levels, and hence,

converting a partitioned allocation policy to a nested allocation policy. Note that P(Πi, yi) is surjective,

since multiple sets of (Πi, yi) can yield the same xi, and N (xi) is injective with yi = Πi|Ci|.

Starting with the dynamic programming (DP) formulation of the RM problem described in Talluri and

van Ryzin (1998), we discuss several tractable approximation models to the DP value function in each time

period. The DP accurately models the problem if the probability of having more than one arrival between

two time periods is negligible, or as a special case, if arrivals between two time periods only belong to the

same class (see Robinson (1995)). Mathematically, the optimality equation is

vt(K) = �

⎡
⎢⎣ max

x∈J (K)
0≤xj≤Djt,j∈J

∑
j∈J

rjxj + vt−1

⎛
⎝
⎧⎨
⎩Kf −

∑
j∈Jf

xj

⎫⎬
⎭

f∈F

⎞
⎠
⎤
⎥⎦ (1.1)



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 20

with v0(·) = 0. For each time period t, a decision has to be made about the number of bookings to accept.

In the end, the DP returns a dynamic control policy to indicate which classes are open for each possible

demand scenario over all time periods. Major challenges include the curse of dimensionality (see Powell

(2007)) and tremendous storage requirement of the dynamic controls. Promising techniques have been

developed to cope with these challenges by approximating the value function in a way that a set of static

controls can be efficiently retrieved. Several relevant models are presented in sequel.

The stochastic seat allocation model SP ∗(K) = maxx∈J (K)

∑
j∈J �[rj min{xj , Dj}] is widely known.

It aggregates demand for the remaining time periods and aims to maximize the expected revenue by allo-

cating available seats to each product. While this model is intuitive, it assumes a high-to-low fare ar-

rival order (as it allows “cherry-picking” passengers) and yields a partitioned allocation that captures nei-

ther nesting nor upsell. Its continuous relaxation is known as the probabilistic nonlinear programming

model, and its deterministic version is known as the deterministic linear programming model DLP ∗(K) =

maxx∈J (K)

∑
j∈J rj min{xj , Dj}, where J (K) is the same as J (K) without the integral allocation re-

quirements (see Talluri and van Ryzin (2004) for more details about DLP (K)). To incorporate demand

stochasticity while preserving the simplicity of DLP (K), Talluri and Van Ryzin (1999) propose a ran-

domized linear programming model RLP ∗(K) = �[maxx∈J (K)

∑
j∈J rj min{xj , Dj}]. In practice, its

expectation is numerically approximated using finitely many demand samples. For each of the demand sam-

ples, the primal solution is discarded, and only the dual solution is stored. The final policy is a bid-price

policy with its bid-prices computed using the average dual solution over all the demand samples. It has been

theoretically proven that the RLP bid-prices outperform the DLP bid-prices.

To capture nesting over multiple fare classes without upsell, Curry (1990) derives an itinerary-based

allocation model, which yields a set of static protection levels for each itinerary. His model can be solved

efficiently by a two-stage procedure and is optimal if bookings arrive in a low-to-high fare order. Let ξ be

the number of remaining seats given to an itinerary. The model reads

IP ∗(K) = max
x∈J (K)

{∑
i∈I

Ri|Ci|(Πi, yi)

∣∣∣∣(Πi, yi) ∈ N (xi) for i ∈ I

}

and

Ric(Π
c−1
i , ξ) =

∫ ξ−Πic−1

0

[
ricdic +Ric−1

(
Πc−2

i , ξ − dic
)
fic(dic)

]
ddic

+
(
ric(ξ −Πic−1) +Ric−1(Π

c−2
i ,Πic−1)

) ∫ ∞

ξ−Πic−1

fic(dic)ddic,

(1.2)



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 21

where Ri0 = 0, Πi0 = 0, and fj(·) is the demand density function for product j = (i, c). The revenue

function (1.2) is recursive and has a state space of protection levels and remaining empty seats. It collects

revenue by accepting booking requests for class c and adjusts the remaining seats before proceeding to class

c − 1. Note that since booking requests arrive in a low-to-high fare order, time index can be ignored. The

discrete version of (1.2) can be found in Wollmer (1992).

All the optimization models discussed above are rather intuitive and well-studied. In the following

sections, we discuss how to extend IP (K) to capture customer upsell when demand is multinomial logit. A

solution method is then proposed.

1.3 ITINERARY-BASED ALLOCATION MODEL WITH NESTING AND UPSELL

In this section, we develop a network model that captures both capacity nesting and customer upsell based

on IP (K). Furthermore, we also propose an equivalent stochastic formulation with a structure that allows

us to develop an approximation algorithm.

For capacity nesting, a customer with its corresponding class closed may be given an empty seat from

any lower classes. For customer upsell, it is the opposite. A customer may be willing to pay more to obtain

an empty seat if its corresponding fare class is closed. The former is a choice of the airline with customers

accepting the requests, and the later is a choice of the customer with a probability that is usually assumed

multinomial logit (MNL). For the MNL demand model, the upsell probability of product j is determined

by its attractiveness aj = exp(βs
j sj + βr

j rj), where βs
j and βr

j are the elasticities of the schedule and fare

of product j, and sj is the schedule quality which measures the attractiveness of the flight schedule. The

upsell probability from class c to a higher class c′ on itinerary i is computed based on the proportion of the

attractiveness of the higher class, i.e. picc′ = aic′/(
∑c

l=1 ail + ai|Ci|), where ai|Ci| is the attractiveness of

all options not offered by the host airline. For more information about MNL, we refer the reader to Gallego

et al. (2009).

For an itinerary i, let Uicc′ be a random variable corresponding to the number of upsells from class c to

class c′, let uicc′ be its realization, let ηic =
∑

c′>c uicc′ be the number of accumulated upsells to class c

from all lower classes {c + 1, . . . , |C|}, let pi(c) = (pic1, . . . , pic|Ci|) be the vector of upsell probabilities

of class c with picc = · · · = pic|Ci|−1 = 0 and pic|Ci| being the probability of not buying from the host

airline (leaving our reservation system without making any bookings, and potentially buying from other



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 22

airlines). This definition is consistent with our definition of ai|Ci|. For a given number of rejected bookings

n, let qic(n,pi(c), c) = (Uic1, . . . , Uic|Ci|) be the vector of upsells of class c on itinerary i based on the

multinomial probability distribution B(n,pi(c)). Note that for each uic, a realization of Uic, we have∑
c′∈Ci

uicc′ = n and
∑

c′∈Ci
picc′ = 1, and uic|Ci| ≤ n is the number of customers not buying any products

from the host airline. The itinerary-based allocation model with nesting and upsell is

U ′∗(K) = max
x∈J (K)

{∑
i∈I

Vi|Ci|(Πi, yi,0)

∣∣∣∣(Πi, yi) ∈ N (xi) for i ∈ I

}
,

and the revenue function is

Vic(Π
c−1
i , ξ,ηi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� [ricmin{ξ −Πic−1, Dic + ηic}

+Vic−1

(
Πc−2

i , ξ −min{ξ −Πic−1, Dic + ηic},

ηi + qic(Dic − (ξ −Πic−1 − ηic)
+,pi(c), c))] if ξ ≥ Πic−1,

�[Vic−1(Π
c−2
i , ξ,ηi + qic(Dic,pi(c), c))] otherwise,

(1.3)

where 0 is a vector of zeros of size |Ci|. The revenue for class c is computed based on the minimum of

the available seats and the total demand (demand for class c plus upsells). While the remaining capacity is

updated based on the number of accepted bookings (min{ξ−Πic−1, Dic+ηic}), the total number of upsells

is recorded when rejected bookings exist (i.e. Dic − (ξ −Πic−1 − ηic)
+ > 0, where the maximum operator

indicates that upsells to class c must be first accommodated or discarded before the original demand for

class c is considered). The main differences between IP (K) and U ′(K) are that the vector of the observed

upsells ηi is now part of the state space, and ηic is added wherever demand for class c is present.

Ideally, rejected passengers should be recaptured at the moment that they are rejected. However, since

value of time is not part of the model, upsold passengers are identical regardless which lower classes they

originally belonged, and allocation level is first reduced by the number of upsold passengers, our model

correctly accounts for upsells. To see this, suppose we reject 5 class-c′ passengers, and 2 of them upsell to

a higher class c < c′. We can immediately subtract 2 empty seats from class c, or we can subtract those 2

empty seats later after class-c passengers arrived and before accepting class-c passengers. Given the same

allocation, these two cases produce the same revenue so long as subtracting empty seats from class c later

does not change the revenue that we can collect from the 2 rejected passengers. This also holds with upsells

from multiple lower classes, so long as the upsold passengers to class c are identical.

Proposition 1 shows an equivalent formulation of the problem that exposes its recursive structure.



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 23

Proposition 1. Problem U ′(K) exhibits the following stochastic formulation:

U∗(K) = max
x∈J (K)

∑
i∈I
� [Qi(xi,Di)] . (1.4)

The revenue function for each itinerary i is

Qi(xi,di) = max
z integer

�

⎡
⎣∑
c∈Ci

ricmin {xic + zic+1, dic + ψic}
⎤
⎦ (1.5)

subject to

zic = (xic + zic+1 − dic − ψic)
+ c ∈ Ci (1.6)

(Uic1, . . . , Uic|Ci|) = qic

(
dic − (xic + zic+1 − ψic)

+ ,pi(c), c
)

c ∈ Ci (1.7)

|Ci|−1∑
c′=c

Uic′c = ψic c ∈ Ci (1.8)

where expectation in (1.4) is taken over demand, and expectation in (1.5) is taken over upsells given a

demand sample.

Proof. The proof is completed by mapping the remaining capacity and upsell between two problems, and

exploring the recursive structures of (1.6) and (1.7). See Appendix A.1.1 for details.

Problem U(K) first maximizes the expected revenue by allocating seats to each product. Once the

set of allocated seats and a demand sample are given, sales are maximized by utilizing empty seats and

recapturing rejected customers from lower classes. Constraints (1.6) and (1.7) are the definitions of zic and

Uicc′ for c′ ∈ C. Note that if the expectation over upsell is ignored, the revenue function Qi(xi,di) is similar

to the objective function of DLP (K) but with variable zic+1 to account for the accumulated empty seats

from lower classes and ψic to handle realized upsells to class c. This alternative formulation of the problem

separates the RM decision and sales processes in two steps for an easier and more intuitive interpretation of

the RM problem, and more importantly, it has a structure that we can exploit to develop an algorithm which

we discuss in the next section.

This alternative formulation is also applicable to IP (K), whose corresponding equivalent formulation

can be obtained by assuming continuous demand and dropping ϕ from the formulation of U(K). Formally,

the reformulated problem without upsell is

P ∗(K) = max
x∈J (K)

∑
i∈I
� [Si(xi,Di)] ,



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 24

where the revenue function is

Si(xi,di) = max
z integer

∑
c∈Ci

ricmin{xic + zic+1, dic}

zic = (zic+1 + xic − dic)
+ c ∈ Ci. (1.9)

As upsell, the second level of stochasticity (the first level is demand), is dropped, the problem essentially

becomes a two-stage stochastic programming problem. At the first stage, seats are allocated to each product

subject to flight capacity. At the second stage, bookings are accepted based on the first stage allocation and

a demand realization. Note that problem P (K) is also valid for discrete demand, and we will show later

in Section 1.5 that its corresponding nested allocation policy is asymptotically optimal when no upsells are

allowed, and when its demand and capacity are scaled and normalized linearly with a factor that approaches

infinity.

Let us refer to low-to-high fare arrival order as LH , high-to-low fare arrival order as HL, and random

fare arrival order as R. Before we proceed further, let us summarize all the models we have introduced thus

far in Table 1.1.

Table 1.1: Model Summary

Model Description Arrival Order Integral Nesting Upsell

SP (K) Stochastic seat allocation model HLa � � �

DLP (K) SP (K) without integral allocation requirements HL � � �

RLP (K) DLP (K) with random demand samples HL � � �

IP (K) Curry (1990)’s itinerary-based allocation model LH � � �

U ′(K) Extended IP (K) with upsell LH � � �

U(K) Stochastic programming formulation of U ′(K) LH � � �

P (K) U(K) without upsell LH � � �

aSince the model “cherry-picks” passengers, the implicit assumption on the arrival order is HL.

The Integral column indicates if integral allocation requirement is imposed. The Nesting column

indicates if the nesting nature of the capacity is being explicitly considered in the model, while Upsell

indicates if the model captures upsells.

1.4 SOLUTION METHODOLOGY

We employ the ADP framework described in Powell et al. (2004) to solve our problem. It is specifically

designed for a two-stage stochastic problem with the following properties: the objective function is separable



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 25

in the first stage decision, stochastic information can be easily collected, and a subgradient to the objective

function can be computed.

The idea is to iteratively approximate the complicated objective function by simple basis functions which

can easily encode estimates of the true subgradient. Each iteration consists of two parts. First, we solve the

first-stage problem with the basis functions from the previous iteration. Next, given the solution of the first-

stage problem together with partially observed stochastic information, we solve the second-stage problem to

obtain a new set of slopes to improve and update the slopes of the basis functions. As this procedure iterates

and more information is observed, the original objective function can be approximated arbitrarily closely

under some mild conditions (Powell et al. (2004) show convergence).

Beside some theoretical guarantees, there are two major practical benefits from applying this ADP

framework: 1) the first-stage problem is often easier to solve when the objective function is replaced by

some simple basis functions, and 2) as the problem is separable in the first-stage decision, the second-stage

problem can often be parallelized. In today’s multi-core computing environment, this parallelization feature

can reduce our solution time significantly.

This ADP framework especially suits our problem as 1) the objective function (1.4) is separable in the

first stage decision upon a slight modification shown below, 2) demand and upsells can be easily simulated,

and 3) slopes can be estimated directly based on the recursive structures in (1.6) and (1.7). In our application,

we use piecewise linear functions as the basis functions. To have the objective function (1.4) separable in the

first-stage decision, we change our decision to allocating seats at the itinerary level. It is done by splitting

problem U(K) in two sub-problems and adding an auxiliary variable yi to represent the number of seats

allocated to each itinerary. Formally, the first sub-problem is

U sp1(K) = max
y∈I(K)

∑
i∈I

U sp2
i (yi),

and the second sub-problem is

U sp2
i (yi) = max

x integer

⎧⎨
⎩� [Qi(xi,Di)] :

∑
c∈Ci

xic = yj

⎫⎬
⎭ .

A side benefit from this modification is that as the class-level allocation is decoupled from the network-level

capacity constraints, we can obtain a class-level allocation and accommodate upsells locally and indepen-

dently for each itinerary.



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 26

Let Si = minf∈Fi
{Kf} be an upper bound on the number of seats that can be allocated to itinerary

i, and for itinerary i and allocation level s ∈ {0, 1, ...Si}, we define vis ≈ U sp2
i (s) − U sp2

i (s − 1) to

be an estimate on the marginal revenue of allocating one more seat to itinerary i when s − 1 seats have

already been allocated. The ADP algorithm approximates U sp2
i (yi) by a piecewise linear function Qi(yi) =∑l

s=1 vis+vis+1(yi−l) for a unique integer l satisfying l ≤ yi < l+1. Note that the function has at most Si

many breakpoints, and we assume Qi(0) = 0 (constant offsets can be removed from optimization problems,

and thus, are irrelevant). With these piecewise linear functions, the ADP algorithm first solves U sp1(K) and

produces an itinerary allocation level. For a given itinerary allocation level ȳi, an upsell heuristic (the core

of the ADP algorithm, presented later) is run to estimate the true marginal revenue (sub-gradient) of U sp2
i (·)

at ȳi. The margin is, in turn, used to refine the accuracy of Qi(·), the approximating function to U sp2
i (·).

The complete ADP algorithm is presented in Algorithm 1.

Algorithm 1 ADP Algorithm to approximate U sp1(K)

1: Initialize vis for s = 1, . . . , Si and i ∈ I .

2: while stopping criteria are not met do
3: Solve ȳ = argmaxy∈I(K)

∑
i∈I Qi(yi)

4: for all i ∈ I do
5: Run the upsell heuristic to obtain the marginal revenue v̂i.
6: v̄iȳi = (1− αi)viȳi + αiv̂i.
7: Update stepsize αi by bias-adjusted Kalman filter stepsize rule (see Powell, 2007, chap. 6).

8: vi = argminδ{
∑Si

s=1(δis − v̄is)
2|δis+1 ≤ δis for s = 1, . . . , Si}.

9: end for
10: end while
11: Compute the class-level allocation x̄ based on the last ȳ using the upsell heuristic.

12: return x̄

Step 1 of the ADP algorithm initializes the marginal revenue (slope) for each possible allocation level

over all itineraries. Step 2 stops the algorithm when changes to the slopes are negligible. The while-loop

consists of two parts. In the first part, step 3 solves U sp1(K) using piecewise linear functions {Qi(·)} and

returns the optimal allocation level ȳi for each itinerary i ∈ I . In the second part, steps 5 to 8 updates

slops of Qi(·). Given ȳi, step 5 computes the marginal revenue v̂i at ȳi using the upsell heuristic that we

developed to solve U sp2(ȳi). Step 6 updates the slope using v̂i from step 5 while step 7 updates αi, which

is the stepsize for updating the slope. Note that α is in fact state-dependent, but the dependency is dropped

for ease of exposition. After the slope at ȳi is updated, Qi(·) may not be concave. Step 8 then imposes

concavity on Qi(·) by finding the closest concave piecewise linear function, where the distance is measured



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 27

by the standard two-norm. An efficient projection algorithm can be found in Powell et al. (2004). The

projection does not only guarantee that Qi(·) is concave, but it also allows the approximation model in step

3 to be linearized. The resulting linear programming problem is

max
y∈I(K)

ρ

{∑
i∈I

Si∑
s=1

visρis :

Si∑
s=1

ρis = yi for 0 ≤ ρis ≤ 1 for s = 1, . . . , Si, i ∈ I

}
.

With the well-approximated objective functions and the latest allocation level for each itinerary, steps 11 and

12 compute and return a class-level partitioned allocation, which can be used to construct a nested allocation

policy according to N (x̄).

We now elaborate further the upsell heuristic which estimates the marginal revenue of U sp2
i (·) at ȳi and

produces a partitioned allocation to be returned by the ADP. The heuristic iteratively adjusts the existing

partitioned allocation by moving seats from less-profitable classes to more-profitable classes (with the pres-

ence of upsells, it is not necessary from lower classes to higher classes). It first generates a set of demand

samples, and finds the highest class having a positive allocation. Then, it iteratively reduces the number of

allocated seats and reallocates the extracted seats to lower classes that can most profitably utilize the seats.

If no profitable lower class is found or no more seat can be extracted, the algorithm repeats by finding the

next highest class having a positive allocation. This procedure continues until the highest class having a

positive allocation is also the lowest class. Let ζkic be the kth demand sample for class c on itinerary i. The

algorithm is described in Algorithm 2.



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 28

Algorithm 2 Upsell heuristic to approximate U sp2
i (yi)

Require: yi.
1: Generate N demand samples {ζ1ic, . . . , ζNic } for c ∈ Ci.

2: Initialize xi using EMSR-upsell algorithm.

3: Find ĉ the highest class with a positive allocation.

4: while ĉ is not the lowest class do
5: xiĉ = xiĉ − 1.

6: Apply the revenue estimation algorithm to compute revenue r and collect upsell information.

7: Find a lower class c′ that yields the highest margin δc′ using the margin estimation algorithm and the

upsell information collected in the previous step.

8: xic′ = xic′ + 1.

9: if ĉ = c′ or xiĉ = 0 then
10: Find c̃ the next highest class with a positive allocation.

11: if class c̃ exists then
12: ĉ = c̃
13: else
14: return xi, r + δc′ , δc′ .
15: end if
16: end if
17: end while

Step 1 of Algorithm 2 generates demand samples for the algorithm to estimate the total revenue and

marginal revenue of U sp2
i (·) at yi. Step 2 initializes the class-level allocation using an EMSR type algorithm

modified to capture upsells. Step 3 finds ĉ the highest class with a positive allocation. If ĉ is not the lowest

class, then step 5 subtracts a seat from class ĉ, and step 6 applies a revenue estimation algorithm to compute

the base revenue, which is to be added to the highest revenue margin to yield the total revenue. Simul-

taneously, the revenue estimation algorithm also returns all information necessary for a margin estimation

algorithm to find class c′, which yields the highest revenue margin in step 7. After the extracted seat from

class ĉ is added to class c′, step 10 finds from all lower classes the next highest class having a positive allo-

cation. If such a class exists, the heuristic starts the next iteration with that class. Otherwise, step 14 returns

the modified allocation, the associated total revenue, and the approximated marginal revenue of U sp2
i (·) at

yi.

For completeness, we also briefly summarize the revenue estimation algorithm (Algorithm 5 in Step 6),

the margin estimation algorithm (Algorithm 6 in Step 7), and the EMSR-upsell algorithm (Algorithm 7 in

2) with their details documented in Appendices A.2.1, A.2.2, and A.2.3 respectively.

The revenue estimation algorithm is an implementation-level verbatim copy of Qi(xi,di). It takes the

number of seats allocated to each class, the set of generated demand samples, and returns the average revenue



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 29

over all demand samples along with all rejection and upsell information necessary for the margin estimation

algorithm to efficiently compute the seat margin. It heavily relies on the nested recursive structure of (1.6)

and (1.7) in Proposition 1 to compute the revenue and extract the information directly.

The margin estimation algorithm recovers our single-seat allocation decision to provide a what-if mar-

gin. It requires the same inputs as those for the revenue estimation algorithm, together with the upsell

information, as well as the class c′ that one extra seat is adding to (in step 5 of Algorithm 2). It starts with

checking if there exists a rejected upsell from any lower classes. If a rejected upsell is found, it returns

the class-c′ fare. Otherwise, if no upsells to class c′ are rejected, for any higher classes l = 1, . . . , c′, the

algorithm searches for a rejected booking in class l and its corresponding upsell. If an upsell to a particular

class l′ in {1, . . . , l−1} is found, the algorithm returns rl−rl′ as if no upsell from class l ever exists because

of nesting. If a rejected booking exists but does not result in an upsell, the algorithm returns the class-l fare.

The EMSR-upsell algorithm combines a simple fare-adjusted criterion in Gallego et al. (2009) and the

algorithm in Curry (1990) to efficiently approximate a set of protection levels that accounts for upsell. Addi-

tional cares are given to update the marginal revenue and determine the set of protection levels. Although the

choice-based EMSR algorithm in Gallego et al. (2009) is showed to perform better than this EMSR-upsell

algorithm. However, it is chosen because 1). It efficiently provides a slope at any feasible allocation level

to initialize our ADP algorithm, and 2). As observed in Gallego et al. (2009), the fare-adjusted criterion nu-

merically yields a set of protection levels that tends to reserve more seats to higher classes. This is desirable

as the upsell heuristic (Algorithm 2) iteratively and profitably reallocates seats from higher classes to lower

classes.

1.5 ASYMPTOTIC PROPERTY OF NESTED ALLOCATION POLICY

In this section, we complement the asymptotic optimality analysis of Cooper (2002) for partitioned alloca-

tion policies by showing the asymptotic optimality of the optimal nested allocation policy without upsell.

Our focus is on problem P (K), and as a side product, we show the bounding property of different approxi-

mation models to v|T |(K). Specifically, we show in Lemma 1 that P (K), the version of the nested allocation

model with deterministic demand, yields the same objective value as SP (K), the version of the stochastic

seat allocation model SP (K) with deterministic demand. In Lemma 2, we show that the nested allocation

policy of P (K) is provably better than the partitioned allocation policy of SP (K) even when arrivals of



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 30

different classes are randomly ordered. With these two observations, we can directly apply the results from

Cooper (2002) to obtain the asymptotic optimality of the nested allocation policy of P (K).

Lemma 1. We have SP ∗(K) = P ∗(K).

Proof. The proof is completed by substituting stochastic demand by its expectation, and checking feasibility

of the optimality solution to each problem. See Appendix A.1.2 for details.

Lemma 1 states that we do not need nesting if demand is deterministic. Let us denote by Rπ(D)

the revenue obtained by implementing the allocation policy constructed based on the optimal solution to

problem π given demand sample D. Note that �Rπ(D) is different from π∗, which is simply the objective

value of problem π with various assumptions on the original RM problem. We can achieve �Rπ(D) = π∗

only if all the underlying restrictive assumptions are applicable when the allocation policy is implemented

and revenue is collected. Such examples include �Rv|T |(K)(D) and �RSP (K)(D) for any arrival order of

D, and �RP (K)(D) when the arrival order of D is in fact low-to-high fare.

Lemma 2. We have �RP (K)(D) ≥ �RSP (K)(D) ≥ �RSP (K)(D) ≥ �RDLP (D) for any arrival order.

Proof. The proof is based on the observations that the high-to-low fare arrival order yields a higher rev-

enue than the low-to-high fare arrival order; applying the nested allocation policy under the worst arrival

order (low-to-high fare) yields a higher revenue than applying the partitioned allocation policy, which is

arrival-order independent, and the fact that the partitioned allocation policy from SP (K) is optimal over all

partitioned allocation policies under stochastic demand. See Appendix A.1.3 for details.

Proposition 2. We have DLP ∗(K) ≥ SP ∗(K) = P ∗(K) ≥ v|T |(K) ≥ �RP (K)(D) ≥ �RSP (K)(D) ≥
�RSP (K)(D) ≥ �RDLP (K)(D) for any arrival order.

Proof. The first inequality is clear, since DLP (K) is the same as SP (K) except for the integral allocation

requirements. Inequality SP ∗(K) ≥ v|T |(K) is due to the fact that the number of accepted passengers for

each class by using the dynamic policy of v|T |(K) is a feasible solution to SP (K), and lastly, inequality

v|T |(K) ≥ �RP (K)(D) follows from the optimality of v|T |(K). The proof is then completed by applying

Lemma 1 and Lemma 2.

With this bounding results, we can then directly apply Proposition 2 in Cooper (2002) to obtain asymp-

totic optimality of the nested allocation policy of P (K). We denote by Dk
jt = kDjt the k-time scaled



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 31

demand for product j at time t, and by vk|T |(K) the optimal DP with k-time scaled demand. We call a

quantity normalized if it is divided by k. We show the asymptotic optimality result next.

Proposition 3. If the normalized k-time linearly-scaled arrivals converge in distribution to their unscaled

means, i.e. 1
k

∑
t∈T Dk

jt
D−→ ∑

t∈T �Djt, the nested allocation policy from P (kK) with k-time scaled

demand is asymptotically optimal as k → ∞.

Proof. By Proposition 2, we have

�RDLP (kK)(Dk)/vk|T |(kK) ≤ �RP (kK)(Dk)/vk|T |(kK) ≤ 1.

From Proposition 2 in Cooper (2002), it follows that �RDLP (kK)(Dk)/vk|T |(kK)
k→∞−−−→ 1, and in turn,

we have �RP (kK)(Dk)/vk|T |(kK)
k→∞−−−→ 1 as required.

Proposition 3 ensures that if both demand and capacity are sufficiently large and classes are well-

segmented such that upsells are unlikely, the nested allocation policy of P (K) performs similarly to the

optimal DP, and hence, provides a performance guarantee.

1.6 COMPUTATIONAL EXPERIMENTS

In Section 1.4, we have discussed the ADP algorithm and a set of heuristics for solving the network RM

problem with nesting and upsell. In this section, we split our discussion in two parts. The first part focuses on

the performance of the upsell heuristic (Algorithm 2), and the second part is devoted to the ADP algorithm

(Algorithm 1). The reason to analyze the upsell heuristic separately is that the heuristic by itself is the most

important part of the ADP algorithm. It is the part that captures both nesting and upsell, and returns a seat

margin for the approximating function and a class-level allocation for performance evaluation. The second

part demonstrates the performance of the ADP algorithm. Both parts include simulation details and output

comparisons.

In the first part, the solution quality of the upsell heuristic is benchmarked against the solution qualities

of the algorithm in Wollmer (1992), the choice-based EMSR algorithm in Gallego et al. (2009), and the

optimal dynamic programming algorithm with upsell (1.3). The algorithm in Wollmer (1992) is developed

directly based on the optimality condition of the revenue function (1.2) assuming discrete demand and no



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 32

upsell. It allows us to observe the degree of revenue improvement by incorporating upsell. The choice-

based EMSR algorithm in Gallego et al. (2009) is a heuristic developed based on a modified optimality

condition of (1.2). It efficiently captures upsells and outperforms most EMSR-type algorithms. It allows

us to compare our algorithm to the best algorithm in class (single-leg based and efficient). The optimal

dynamic programming algorithm with upsell is used to find the optimal set of static protection levels under

the low-to-high fare arrival order assumption and to provide optimality gaps. It is based on evaluating all

possible sets of the protection levels using (1.3) over a large set of demand samples. At the end, we also

empirically demonstrate the accuracy of the marginal revenue returned by the upsell heuristic and show the

effect of the projection operation in step 8 of the ADP algorithm before discussing the solution quality of

the ADP at the network level.

In the second part, we run the ADP algorithm and benchmark its allocation policy against the RLP bid-

price policy on a real airline network with 136 flights, 309 itineraries, and 31 reading days. In the absence

of a scalable method that simultaneously incorporates nesting, upsell, demand stochasticity, and network

information, we select RLP as it captures demand stochasticity and network information while providing

scalability, reliable performance, and some theoretical guarantees (see Talluri and Van Ryzin (1999) and

Topaloglu (2009)). We test our proposed allocation policy over various demand multipliers to measure the

effect of the network fill rate and the sensitivity of the allocation policy to inaccurate upsell probabilities.

Figure 1.1 summarizes the architecture of the simulation module that evaluates control policies. It illus-

trates the flow of the simulation for the first reading day. At the beginning of the simulation, mean demand

and flight capacity are queried from the database. While the flight capacity is fed to the optimization module,

the mean demand is scaled and randomized. The resulting mean demand is used to generate Poisson demand

sample paths for the simulation and optimization engines to compute and evaluate the control policies. The

order of the arrivals between two reading days is randomized before any control policy is applied. Note that

the simulation does not assume the low-to-high fare arrival order that our model assumes. Hence, it provides

a realistic and fair comparison to the RLP bid-price policy which assumes random arrival orders. After the

control policy is applied to accept and reject a booking, the corresponding upsell (if exists) is then generated

to consume an empty seat from one of the higher classes. In the end, the revenue is computed based on the

total number of bookings accepted for each class, and the flight capacity is updated before moving to the

next reading day.



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 33

Update Capacity

Evaluator

Bid prices
Protection Levels

Arrival (T-1, 0)

Arrival (T, T-1)

Capacity

Simulate Arrivals

Shuffle Arrival Order

Accept/Reject

Record Revenue and 
Consumed Capacity

Database

Randomize and Scale 
Demand

Capacity

T-1

Demand for each t

Optimization Optimization

Revenue at T

Generate Upsells

Figure 1.1: Flow chart of simulation at time T , the first reading day.

Let Ksim and Kopt be the number of demand sample paths generated for simulation and optimization

respectively. For all single-leg simulation experiments, we follow the simulation settings of Gallego et al.

(2009) by setting both Ksim and Kopt to 100, 000 to eliminate the effect of the standard error. Furthermore,

all examples in Gallego et al. (2009) as well as some constructed cases are tested. For each itinerary, all

algorithms being tested allocate remaining seats, e.g. ξ − Π|Ci|−1, to the lowest class. For all network

simulation experiments, due to the large amount of parameters we test and the long running time involved,

we restrict Ksim and Kopt to 100 and 50 respectively. Although the number of simulation samples for

simulation is relatively small, our results lead to insightful conclusions, which are all valid under a 5%

significant level.

All simulation experiments have been run on a cluster of 50 servers. Each server has two 3.2 GHz

Intel(R) Xeon(TM) CPUs and 6GB of memory, yet only up to 3GB were used due to our 32 bits limitation.

IBM ILOG Cplex is used to solve the approximated network problem (step 3 of the ADP algorithm). After

the allocation level for each itinerary is determined, the upsell heuristic is parallelized by itinerary over all

available processors.



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 34

1.6.1 SINGLE LEG COMPARISON

We evaluate the solution quality of the upsell heuristic (Algorithm 2) by comparing it with the solution

qualities of the algorithm in Wollmer (1992), the choice-based EMSR algorithm in Gallego et al. (2009), and

the optimal dynamic programming with upsell. Let us abbreviate the algorithm to compute protection levels

in Wollmer (1992) by EMSR-w, the choice-based EMSR algorithm in Gallego et al. (2009) by EMSR-cb,

the optimal DP with upsell by DP, and the upsell heuristic by EMSR-d, where d refers to the dynamic nature

of the algorithm. All examples in Gallego et al. (2009) as well as some constructed examples are tested.

Let α be the multiplier for both the fare and schedule quality, let γ be the margin scaler, let λ be the

total demand, and let |C| be the class to represent the option not buying from the host airline. To construct

the examples, we set the fare for each class to rc = αexp(γ(|C| − c + 1)/|C|) and schedule quality to

sc = αexp(γ(|C| − c+1)/(2|C|)). The fare and schedule quality for the not-buying option are the average

fare and average schedule quality over all classes. These functions are selected in a way that the margin

increases with the fare class, and the resulting fares closely match the real world data provided. For all

constructed examples, the elasticities of fare and schedule are set to be βr
j = −0.0035 and βs

j = 0.005

respectively, which are the same settings in Gallego et al. (2009). Table 1.2 shows simulation settings for

two/three/four/five-class examples, where the first three cases are taken from Gallego et al. (2009), and the

fourth case is constructed based on α = 100 and γ = 0.6. The first row refers to the number of classes in

each example. The second row shows the elasticities of the schedule and price. The row after is the number

of total booking requests. The remaining rows are fares and schedule qualities for different classes. Recall

that the last class represents the not-buying option.

Table 1.2: Simulation settings for two/three/four/five-class examples

|C| 2 3 4 5

βr
j /β

s
j -0.005 0.005 -0.0035 0.005 -0.0035 0.005 -0.0035 0.005

λ 26.67 25 50 20

Class fare schedule fare schedule fare schedule fare schedule

1 1000 1200 1000 200 1000 400 2008.55 448.17

2 800 1000 800 200 900 300 1102.32 332.01

3 900 1100 500 200 600 300 604.96 245.96

4 1100 500 500 300 332.01 182.21

5 1000 600 182.21 134.99

6 846.01 268.67



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 35

Optimality gaps are summarized in Figure 1.2. For 2 and 3 classes, both EMSR-d and EMSR-cb

perform similarly to DP with optimality gaps smaller than 1%. The solution quality of EMSR-w first dete-

riorates and is gradually improved as the number of available seats increases. For 4 classes, EMSR-d starts

to outperform EMSR-cb when the number of seats available is higher than 16, and its optimality gap is still

less than 1% while the optimality gap for EMSR-cb is about 2% in several occasions. For 5 classes, the

gaps for both EMSR-w and EMSR-cb are significantly widened. This illustrates the drawback of estimating

optimal protection levels based only on simple probability statements that cannot fully describe the dynamic

of upsell.

10 15 20 25 30
 0%

 2%

 4%

 6%

 8%

10%
2 Classes

Capacity

O
pt

im
al

ity
 G

ap

 

 
EMSR−w
EMSR−d
EMSR−cb

10 15 20
 0%

 2%

 4%

 6%

 8%

10%

12%

14%

16%
3 Classes

Capacity

O
pt

im
al

ity
 G

ap

 

 
EMSR−w
EMSR−d
EMSR−cb

20 30 40
 0%

 2%

 4%

 6%

 8%

10%

12%

14%

16%
4 Classes

Capacity

O
pt

im
al

ity
 G

ap

 

 
EMSR−w
EMSR−d
EMSR−cb

10 20 30 40 50
 0%

 5%

10%

15%

20%

25%

30%

35%
5 Classes

Capacity

O
pt

im
al

ity
 G

ap

 

 

EMSR−w
EMSR−d
EMSR−cb

Figure 1.2: Optimality gap comparisons for two/three/four/five classes.

Figure 1.3 shows the running time as a portion of the running time of DP. It is clear that the relative

running time of EMSR-d generally decreases as the number of classes increases. However, it sharply in-

creases in the two-class example after the point where capacity and demand level meet. The reason is that

EMSR-d initializes the allocation by the EMSR-upsell algorithm (Algorithm 7), which reallocates more

seats to higher classes before moving the seats one-by-one to lower classes that are stochastically more

profitable. This incurs extra overhead and algorithmic operations, and hence, slows down the algorithm.

Furthermore, it is also due to the fact that running DP for the two-class problem is relatively inexpensive

and hence, the gap is widened further. However, such an increase of running time gradually diminishes in

the number of classes, since the running time of DP exponentially increases.



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 36

10 15 20 25 30
  0%

100%

200%

300%

400%

500%

600%

700%
2 Classes

Capacity

%
 o

f D
P

 R
un

ni
ng

 T
im

e

 

 
EMSR−w
EMSR−d
EMSR−cb

10 15 20
  0%

 20%

 40%

 60%

 80%

100%

120%

140%
3 Classes

Capacity

%
 o

f D
P

 R
un

ni
ng

 T
im

e

 

 
EMSR−w
EMSR−d
EMSR−cb

20 30 40
0%

1%

2%

3%

4%

5%

6%
4 Classes

Capacity

%
 o

f D
P

 R
un

ni
ng

 T
im

e

 

 
EMSR−w
EMSR−d
EMSR−cb

10 20 30 40 50
  0%

 20%

 40%

 60%

 80%

100%
5 Classes

Capacity

%
 o

f D
P

 R
un

ni
ng

 T
im

e

 

 
EMSR−w
EMSR−d
EMSR−cb

Figure 1.3: Percentage of the running time of DP for two/three/four/five classes from left to right, smaller

the better.

In addition to the five cases discussed, extra simulation experiments were conducted for other cases that

we constructed based on the method we described in the beginning of Section 1.6. We use EMSR-d instead

of DP as the base to compute the optimality gaps, as our primary focus now is on how well our algorithm

performs relative to other approximation algorithms. We tested α ∈ {100, 200, 300}, γ ∈ {2, 2.5}, C ∈
{2, 3, . . . , 10}, λ ∈ {10, 20, 30, 40, 50}, and capacity in [5, 10, . . . , 50]. Average relative optimality gaps

based on EMSR-d are given in Table 1.3, and the percentages of running time increase are given in Table

1.4.

In general, EMSR-d outperforms both EMSR-w and EMSR-cb up to 26% and 24% respectively when

the number of classes increases, yet the percentage of the running time also increases as the running times

for EMSR-w and EMSR-cb are fairly constant regardless the number of fare classes and demand magnitude.

Note that when the number of bookings increases (more upsells indirectly), the optimality gap of EMSR-w

is larger while the optimality gap of EMSR-cb becomes smaller. It suggests that EMSR-cb indeed captures

upsells and outperforms EMSR-w when demand is not too low. Interested reader is referred to Appendix

A.1 for the average running time of EMSR-d in second and the average demand factor (demand-to-capacity

ratio) for different numbers of classes and total demand.



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 37

Table 1.3: Average relative optimality gap based on EMSR-d.

λ 10 20 30 40 50

|C| EMSR-w EMSR-cb EMSR-w EMSR-cb EMSR-w EMSR-cb EMSR-w EMSR-cb EMSR-w EMSR-cb

2.0 1.33% 0.09% 3.90% 0.12% 6.98% 0.17% 9.04% 0.10% 11.79% 0.21%

3.0 22.49% 0.21% 22.15% 0.35% 23.11% 0.80% 23.63% 1.16% 23.63% 1.44%

4.0 21.43% 3.62% 22.42% 3.98% 22.62% 4.36% 23.39% 4.53% 24.67% 4.77%

5.0 20.82% 10.62% 22.48% 10.10% 23.53% 9.32% 24.03% 7.97% 24.94% 6.81%

6.0 20.81% 14.51% 22.95% 13.86% 23.68% 12.30% 25.29% 10.87% 25.81% 9.04%

7.0 21.25% 17.45% 22.82% 16.41% 24.07% 14.50% 25.02% 12.25% 26.06% 9.95%

8.0 20.62% 23.52% 22.47% 21.67% 23.95% 19.49% 25.03% 16.79% 25.95% 13.76%

9.0 20.55% 19.43% 22.53% 18.21% 24.18% 16.24% 24.96% 13.74% 26.02% 11.28%

10.0 20.22% 24.19% 22.38% 22.59% 24.18% 20.18% 25.39% 17.44% 26.02% 14.50%

Table 1.4: Average percentage of running time based on EMSR-d

λ 10 20 30 40 50

|C| EMSR-w EMSR-cb EMSR-w EMSR-cb EMSR-w EMSR-cb EMSR-w EMSR-cb EMSR-w EMSR-cb

2.0 3.64% 1.77% 5.50% 1.55% 7.78% 2.24% 9.75% 2.68% 12.02% 3.12%

3.0 8.82% 7.03% 6.88% 4.66% 5.51% 2.87% 6.69% 2.88% 7.09% 3.07%

4.0 5.26% 4.65% 4.09% 2.81% 4.26% 1.98% 4.82% 2.24% 6.36% 2.47%

5.0 3.81% 3.30% 3.31% 2.17% 4.03% 1.81% 4.45% 1.78% 4.74% 1.75%

6.0 3.01% 2.70% 2.93% 1.87% 3.29% 1.51% 4.22% 1.54% 4.66% 1.53%

7.0 2.57% 2.50% 2.63% 1.71% 2.97% 1.38% 3.46% 1.29% 4.42% 1.43%

8.0 2.25% 2.23% 2.47% 1.60% 2.90% 1.35% 3.33% 1.24% 4.31% 1.36%

9.0 2.14% 2.28% 2.33% 1.58% 2.61% 1.27% 2.95% 1.14% 3.49% 1.14%

10.0 2.01% 2.19% 2.27% 1.58% 2.57% 1.29% 2.98% 1.16% 3.35% 1.12%

In order to closely approximate (1.5) with piecewise linear functions, we need to accurately estimate

marginal revenue at each itinerary allocation level. Figure 1.4 illustrates how accurate the marginal revenues

are estimated by EMSR-d in two examples which are the most representative given the data that we have.

For each example, demand for the not-buying option is two times of the total demand, and the attractiveness

of a fare class is set to be the magnitude of its corresponding demand. The figure on the left displays marginal

revenue curves generated based on DP, EMSR-w, and EMSR-d for a four-class example with demand in {20,

15, 10, 5} and revenue in {100, 250, 500, 800}. It shows that the marginal revenue curve generated based

on EMSR-d collides with that of DP, while the margins from EMSR-w are significantly different. The figure

on the right similarly shows the marginal revenue curves obtained from an example with fifteen classes

selected from a real world data set. Its demand is {2, 1, 24, 6, 10, 6, 15, 27, 2, 12, 8, 9, 3, 4, 23} and the

revenues are {19.89, 22.13, 29.49, 29.78, 32.11, 33.78, 44.49, 51.98, 56.34, 62.52, 74.27, 128.85, 135.05,

170.71, 272.26}. We did not include DP as it is no longer tractable. Instead, we focus on how the projection

operation from step 8 of the ADP algorithm changes the marginal revenues. The projected marginal revenue



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 38

curve is denoted by pjEMSR-d in the figure. It is clear that the marginal revenue curve is not monotonic,

and hence, the corresponding revenue curve is not concave. After being projected, the marginal revenue

curve becomes monotonic while many of the original margins are preserved. In summary, when the number

of classes is small, EMSR-d accurately estimates the marginal revenues, and the projection operation can be

safely applied to expedite the convergence of the ADP algorithm without significantly altering the original

revenue margins returned by EMSR-d.

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

700

800
4 Classes

Capacity

R
ev

en
ue

 

 
EMSR−w
EMSR−d
DP

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300
15 Classes

Capacity

R
ev

en
ue

 

 
EMSR−w
EMSR−d
pjEMSR−d

Figure 1.4: The marginal revenue curves for a four-class example (left) and a fifteen-class example (right).

1.6.2 MEDIUM-SIZE AIRLINE NETWORK

In this section, we evaluate the performance of the protection levels returned by the ADP Algorithm using a

medium airline network based on a real world data set. Table 1.5 summarizes the airline network, which has

136 flights, 309 itineraries, 31 reading days, 10.5 fare classes on average for each itinerary, and an average

demand ratioa of 80%. We first present the simulation settings and implementation details, and conclude

this section with simulation results.

Table 1.5: Summary of the medium airline network

No. of flights 136 Min. demand factor 3%

No. of itineraries 309 Avg. demand factor 80%

No. of reading days 31 Max. demand factor 240%

Avg. No. of Classes 10.5



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 39

IMPLEMENTATION DETAILS ON THE ADP ALGORITHM

To run the ADP Algorithm, we need to initialize the marginal revenues properly and set up appropriate stop-

ping criteria to prevent the algorithm from stalling without significantly trading off the solution quality. In

our implementation, marginal revenues are initialized based on EMSR-w. It is mainly used for its efficiency

as the marginal revenue for each possible itinerary allocation level has to be computed. If the upsell heuristic

is used instead, running time will be excessively long without improving the solution quality significantly.

The reason is that initial marginal revenues, if it is not totally inaccurate, do not significantly affect the final

solution, and running several more iterations of the ADP algorithm to improve the solution is considerably

less expensive. The ADP Algorithm is stopped if the current revenue is in [μ± 0.001σ], where μ and σ are

the average revenue and standard deviation computed based on the last 30 revenue points. This stopping

criterion guarantees that a large shift in revenue is probabilistically unlikely. To expedite the algorithm, we

cease learning (updating marginal revenues) for an itinerary if the difference between its revenue from the

last iteration and the revenue from the current iteration are less than 1% of its average revenue over the last

10 iterations.

SIMULATION SETTINGS

To evaluate the solution quality of the nested allocation policy under multiple demand scenarios, we ran-

domize and scale the mean demand. To be more specific, the mean demand is randomized by a nor-

mal distribution and scaled by a multiplier. The resulting mean serves as the mean to generate Pois-

son demand sample paths for both simulation and optimization. The standard derivation is selected to

be a multiple of the mean. Denoting the demand mean by Dict, the randomized demand is Dict ∼
Round(N ormal((1 + m1)Dict, (Dict/3)

2)), where m1 ∈ {−0.4,−0.2, 0, 0.2, 0.4} is the demand mul-

tiplier (see Appendix A.2 for the corresponding demand factors), and the divisor 3 is the scaling factor of

the standard deviation in order to match the original mean value, i.e. about 99.7% of the random demand

falls into the interval of [Dict ±Dict]. We regenerate if the realized demand is negative.

In reality, upsell probabilities are difficult to estimate due to data censorship. It is important to exam-

ine how forecasting error on upsell affects the performance of the nested allocation policy. Toward this

end, we use two different sets of upsell probabilities, one for simulation, and one for optimization (when

aDemand-to-capacity ratio over all flights.



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 40

upsell information is generated in Algorithm 2). In both sets, the upsell probability is computed based on

pjicc′ = mj
2�Dic′/

∑c−1
l=1 �Dil for c, c′ ∈ Ci, where j ∈ {simulation, optimization} and mj

2 is the upsell

probability multiplier. If mj
2 = 0, no upsell occurs. If mj

2 = 1, no not-buying option exists. The values of

mj
2 are selected in [0, 0.1, . . . , 0.9].

We benchmark our allocation policy against the RLP bid-price policy. The number of demand sample

paths for simulation is 100 across the entire booking period, the number of demand samples generated per

ADP iteration is 50, and 50 demand samples are generated for the RLP.

DISCUSSIONS

We first discuss the case when demand varies and upsell probabilities are estimated accurately, i.e. the upsell

probabilities for simulation and optimization are the same. The results are summarized in Figure 1.5. Each

series corresponds to a demand multiplier ranging from −0.4 to 0.4 with an increment of 0.2. The figure

shows in general that when demand increases, the percentage of revenue improvement increases over all

scales of upsell probabilities, and is especially prominent in the central region where the upsell probability

multiplier is in [0.3, 0.7]. We also observe that the improvement is similar for different demand multipliers.

It suggests that the improvement is robust to the magnitude of the demand. The difference can be as much as

5% between the lowest (-0.4) and highest (0.4) demand multipliers. When the upsell probability multiplier

increases, the percentage of revenue improvement increases in a convex manner. It suggests that the ability

to capture upsell is vital when there are considerable amount of upsells.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−5%

 0%

 5%

10%

15%

20%

25%

30%

35%

Upsell Probability Multiplier

%
 o

f R
ev

en
ue

 Im
pr

ov
em

en
t

 

 
−0.4
−0.2
0
0.2
0.4

Figure 1.5: Percentage of revenue improvement against upsell probability multiplier when upsell probabili-

ties are forecasted accurately.



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 41

Figure 1.6 and 1.7 show the percentage of revenue improvement for all tested combinations of msimulation
2

and moptimization
2 when m1 = 0, i.e. demand is not scaled. The results are similar for other demand multipli-

ers. See Table A.3 in Appendix A.3 for the exact numerical values. Figure 1.6 shows simulation results with

each series corresponding to one value of msimulation
2 in {0, 0.1, 0.2, 0.3, 0.4}. Overall, each improvement

curve slowly increases until it is at its peak when msimulation = moptimization and gradually decreases after-

ward. The largest improvement is about 2.29% when msimulation
2 = moptimization

2 = 0.4. The declining rate

is faster when msimulation
2 is small. The figure also shows that when moptimization

2 ≤ msimulation
2 , revenue

improvement is almost guaranteed, except for the case when upsell does not exist, e.g. msimulation
2 = 0. It

signifies that it is better to underestimate the upsell probabilities when applying the ADP algorithm. Figure

1.7 shows simulation results when msimulation
2 is in [0.5, 0.6, 0.7, 0.8, 0.9]. The situation is the opposite:

overestimating upsell probabilities provides better results than RLP , and the revenue improvement can be

as high as 33% when there is a 90% chance a rejected customer will upsell, and the upsell probability is

estimated accurately. The reason for such an opposite behavior can be contributed to both the cascading ef-

fect of the upsell and the suboptimal nature of the upsell heuristic. When msimulation
2 ≥ 0.5, every rejected

booking is more likely to upsell than opting for the not-buying option. It results in pushing more low-class

demand upward when msimulation
2 increases. This phenomenon is particularly obvious when there exists

many classes. Since the effect is accumulative starting from the lowest class, having additional seats for

higher classes resulting from overestimating the actual upsell (moptimiation
2 ≥ msimulation

2 ) becomes ben-

eficial. On the heuristic side, although the upsell heuristic captures upsells, it seems to underestimate the

number of seats required when there is such an upsell-cascading effect. Another possible explanation is that

RLP bid-price policy performs relatively undesirably when there exists a large amount of upsells.



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 42

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−35%

−30%

−25%

−20%

−15%

−10%

 −5%

  0%

  5%

Upsell Probability Multiplier (Optimization)

%
 o

f R
ev

en
ue

 Im
pr

ov
em

en
t

 

 

0
0.1
0.2
0.3
0.4

Figure 1.6: Percentage of revenue improve-

ment against moptimization
2 when m1 = 0 and

msimulation
2 ≤ 0.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 0%

 5%

10%

15%

20%

25%

30%

35%

Upsell Probability Multiplier (Optimization)

%
 o

f R
ev

en
ue

 Im
pr

ov
em

en
t

 

 
0.5
0.6
0.7
0.8
0.9

Figure 1.7: Percentage of revenue improve-

ment against moptimization
3 when m1 = 0 and

msimulation
3 ≥ 0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

2

2.5

3

3.5

4

Upsell Probability Multiplier (Optimization)

R
un

ni
ng

 T
im

e 
in

 M
in

ut
e

Figure 1.8: Average running time of the ADP algorithm in minute.

Figure 1.8 presents the average running time of the ADP algorithm. It shows that the algorithm takes

longer to estimate a set of protection levels when the upsell probability for optimization increases. The

running time stretches from less than 30 seconds to about 4 minutes. The reason for such an increase in

the running time is that when more upsells are available, the upsell heuristic needs more enumerations to

adjust the seat allocations and to compute the required margins for the piecewise linear functions in the

ADP algorithm. On the other hand, the running time of the RLP is negligible, and hence, is not reported.

Nonetheless, solving over a medium airline network in 4 minute is an acceptable practice.



www.manaraa.com

CHAPTER 1. ITINERARY-BASED CONTROL WITH NESTING AND UPSELL 43

1.7 CONCLUSION

Despite the prevalence of the bid-price policy, we aim to capture capacity nesting and customer upsell by

extending an itinerary-based nesting model proposed by Curry (1990). We show that the itinerary-based

nesting model can be formulated as an equivalent stochastic programming problem, which allows us to

adapt an ADP framework to efficiently approximate the originally complicated objective function. We also

derive an upsell heuristic based on the recursive structure of the problem, and integrate the heuristic into the

ADP algorithm to solve the network RM problem over a medium airline network using a real world data set.

From our single-leg simulation experiments, we observe that the upsell heuristic significantly outper-

forms the algorithm of Wollmer (1992) by as much as 26% and the choice-based algorithm of Gallego et al.

(2009) by as much as 24% when the number of classes is large. The projection operation does not signifi-

cantly alter the seat margin, and thus, can be safely applied to expedite the ADP algorithm without losing

accuracy. From our network experiments, we found that the percentage of revenue improvement increases

when demand is large and upsell is likely by using our nested allocation policy instead of the RLP bid-price

policy. When upsell probabilities can be estimated accurately, the proposed allocation policy rarely does

worse than the RLP bid-price policy, and can improve the revenue up to 35% (∼ $420, 000) when the upsell

probability is high. To be more encouraging, the results are robust to demand magnitude, and hence, similar

revenue improvement can be expected from a network that is more or less capacitated. When upsell prob-

abilities cannot be estimated accurately, it is better to underestimate upsell probability when upsell is less

likely than opting for the not-buying option. Otherwise, overestimating upsell probability is relatively more

beneficial. In the end, we also want to stress the practicality of our algorithm by recalling that it only takes

4 minute to finish running over a medium airline network.

Several interesting questions remain open: 1). Is there a way to estimate the bid prices while capturing

upsell based on our ADP algorithm? Currently, the bid prices are itinerary-based and inferior to the RLP

bid-prices, as the marginal revenue from sharing capacity on the same flight across multiple itineraries

cannot be fully captured. 2). Under what conditions should we switch to the bid-price policy. Note that as

our itinerary-based allocation policy is derived mostly at the itinerary level, it may not work well when the

network is heavily intertwined. 3). Can the ADP algorithm be easily extended to capture other customer

behaviors such as cancellation and no-show?



www.manaraa.com

44

Chapter 2

AIR CARGO ALLOTMENT PLANNING

In the mid-term capacity planning process for air cargo, a cargo carrier reserves

capacity up to six months in advance for its clients, who provide regular and frequent

shipments over multiple flights. We model the underlying capacity allocation

problem as a portfolio optimization problem to allocate cargo space on flights while

minimizing the demand covariance between allotments and spot market demand.

Due to the complexity of the problem, we develop an efficient partitioning algorithm

to decompose the problem into subnetworks and cluster demand. The resulting

allocation policy is tested using a real world dataset provided by a solution vendor,

and it is benchmarked against a risk-neutral allocation policy used in practice. We

observed on average revenue improvement by 2%, which approximately accounts for

$150, 000 per week for major cargo carriers.

Key words: air cargo, revenue management, stochastic optimization

2.1 INTRODUCTION

Air cargo is an indispensable part of airline business. When an aircraft carries passengers to its destination,

its belly is utilized to carry cargo shipments. However, with an expected strong growth of cargo demand

since 2010, airlines started to purchase dedicated cargo aircraft (freighters) to exclusively handle cargo

shipments. Some carriers even set up an independent cargo division to take advantages from the upcoming

demand surge. Nowadays, the cargo business accounts for more than 20% of the total revenue for many

major carriers (RITA (2012b)).

Revenue management (RM) in air cargo consists of short and mid-term allocation processes. The short-



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 45

term allocation process allocates available flight capacity to volatile spot market demand, and shippers

are charged based on the floating market rate. Despite the volatility of the spot market, shippers in the

spot market utilize their allocation more effectively as they request capacity only when they are (almost)

certain about their shipments. Similarly to the allocation process for passenger RM, the short-term allocation

process is run nightly to update the capacity allocation given the remaining capacity and updated demand

forecast. The resulting allocation policy is then implemented next day to accept and reject shipment requests.

On the other hand, the mid-term allocation process is executed twice per year with a planning horizon of six

months. It allocates flight capacity to large and regular shipments that provide a stable revenue stream to the

carrier. By promising regular shipments, shippers in return receive a discounted rate and guaranteed space.

The mid-term allocation process is initiated when the carrier releases a new flight schedule. In the

process, the carrier sells flight capacity in the form of allotments, which are simply reserved blocks of

cargo space, to shippers through various capacity commitments. Those shippers can be freight forwarders,

significant clients, and local station managers. Freight forwarders are capacity resellers. They acquire cargo

space in advance, and later consolidate spot market demand from their own business to efficiently utilize the

acquired cargo space. Significant clients are clients that require a large amount of cargo space over many

flights. Although they usually receive a deep discount rate, they account for a significant portion of the total

revenue. Local station managers are essentially freight forwarders owned by the carrier. However, they only

consider the amount of space that they should acquire on flights that depart from their stations.

Figure 2.1 provides details about the mid-term allocation process in practice. It starts in the first week

when the tentative flight schedule for the next six months is released. After receiving the new flight schedule,

each shipper/bidder prepares an allotment bid with a bidding price, shipment schedule, and capacity require-

ments measured in weight, volume, and the number and type of unit load devices (ULD). An ULD is a cargo

container or pallet that can be used to containerize shipments, and can be easily loaded onto compatible air-

craft. Once the bids are collected, the carrier prepares input for the optimization system including existing

allotments to be honored, capacity forecasts, overbooking rates, available itineraries, operating costs, freight

rates, and any business rules that are to be complied. The optimization system then converts the requested

capacity of each bid to the smallest ULD type to reduce the complexity of the problem, solves a resource

allocation problem, and converts the solution back to the originally requested ULD types. It returns an

allocation policy that suggests the carrier which bids should be accepted or rejected, which itineraries are

used, and how much space should be reserved on each itinerary (depending on the type of the commitment,



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 46

the carrier can grant less capacity than requested). However, it neither considers ad-hoc allotment bids,

which are bids that come during the planning horizon, nor spot market demand that only appears close to

departure. At the end, after fine tuning the allocation for each accepted bid through an iterative negotiation

process with its bidder, the carrier constructs allotments by aggregating the allocated weight and volume for

each shipper, and uploads the allotments to the booking system for the shippers to book in the future. The

entire allocation process takes about seven weeks. Any ad-hoc allotment bids are accepted only if they are

profitable, and cargo space is available.

P
la

nn
in

g
C

on
tin

uo
us

 R
ev

ie
w

4th Week 5th Week 7th Week6th Week3rd Week2nd Week1st Week

Submit
Allotment

Bids

Optimization
System

Collect & 
Validate

Input

Fine Tuning Output by 
Negotiation

Booking
System

(Available for 
Bookings)

Freight
Forwarders
Big Clients

Ad Hoc Allotment 
Requests

Unused Allotment

Local Stations

Profitable & 
Enough capacity?

Yes: update the system

Figure 2.1: The mid-term allocation process.

The two paragraphs just described distinctive allocation processes heavily depend on each other, since

flight capacity can be used either as an allotment or reserved for the spot market. When the market rate is

high and the allotment utilization is low, the cargo space should be kept for the spot market. Otherwise, allot-

ments can be used to hedge against the volatility of the spot market. Thus, instead of allocating capacity to

allotments first and selling the remaining capacity on the spot market later, carriers can utilize their capacity

more effectively and economically by considering both allotments and spot market demand simultaneously

during the mid-term allocation process.

Although efforts have been made in recent years, RM in cargo has not received comparable attention

to RM in passenger, since the cargo business has not been regarded as the main revenue stream for many

airlines. In practice, many airlines directly adopt their passenger RM system to manage their cargo business.

However, this results in suboptimal capacity controls due to the following major differences between the two

RM systems.

• Cargo RM consists of both mid-term and short-term allocation processes while passenger RM has



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 47

only the latter.

• Passengers are itinerary-dependent, but cargo shipments are mostly defined at the origin-destination

level with a delivery deadline.

• While passenger demand is counted in the number of passengers, cargo demand is counted in the units

of weight, volume, and ULDs.

• Similarly, in passenger RM, flight capacity is counted in the number of seats. Cargo capacity is

measured in the units of weight, volume, and aircraft positions, which are designated aircraft floor

areas with a special equipment to fasten compatible ULDs.

• While passengers can only be show-up or no-show, shippers can partially utilize their allocation with-

out paying any penalties.

In fact, cargo RM is more challenging since the mid-term allocation process allocates capacity six

months in advance. Let alone the demand stochasticity and the aforementioned differences, the underly-

ing optimization problem is a large multi-dimensional bin packing problem, which is difficult to solve.

Thus, our goal is to modify the allocation model so that allocation requirements can be exactly captured,

and an allocation policy can be obtained efficiently and of good quality.

There are three major drawbacks in the current optimization system. Firstly, assigning capacity based on

the smallest ULD type may not yield a feasible solution when the allocation decision is converted back to the

originally requested ULD types, since there are physical limitations on the number of ULDs of a specific type

that can be loaded onto an aircraft. If the solution is infeasible, operators either rerun the optimization with

additional constraints or manually adjust the solution in the hope that a feasible solution can be obtained.

In either case, considerable amount of time and efforts are required to obtain a feasible solution. Secondly,

the optimization systems consider allotments first and treat spot market demand secondarily. In fact, as

we explained earlier, spot market demand may as well be equally profitable. Thirdly, the process does

not capture the variability and correlated nature of allotments and spot market demand. For example, an

allotment being frequently underutilized may indicate an upward shift of the spot market demand for the

same product. This could happen when there are constant delays in the supply chain of a shipper. In

this case, the allotment should be appropriately reduced so that the extracted space could be sold to more

profitable shippers or on the spot market.

In this paper, we propose a portfolio optimization problem for the optimization system to resolve the

aforementioned drawbacks. Our goal is to capture the necessary allocation requirements while considering



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 48

demand correlation between allotments and spot market demand. In addition, we capture ULDs exactly on

both ends (bids and aircraft positions). Due to the size of the problem, we decompose the problem by a

partitioning algorithm. It efficiently partitions flights and groups profitable demand together, and returns a

demand cluster for each set of flights in the resulting flight partition. Then, the portfolio optimization prob-

lem is applied to each demand cluster to minimize the demand covariance within the demand cluster subject

to a revenue lower bound and capacity upper bounds on the corresponding flights. To evaluate the solution,

we benchmark the resulting allocation policy against the risk-neutral allocation policy, which is obtained by

solving our problem without demand covariance. Both allocation policies are tested using a simulator that

we constructed to evaluate their performances and sensitivities on both the revenue lower bound and demand

clusters. While varying the revenue lower bound affects the tradeoff between the risk-neutral revenue and

variability, demand swapping across clusters perturbs the covariance matrices considered by the portfolio

optimization problem and provides a fair performance comparison with the risk-neutral allocation that is

cluster-independent.

We make the following contributions.

1. We provide a risk-averse portfolio optimization model that considers demand variability, correlation

between allotments and spot market demand, demand requirements at the container level, and capacity

requirements at the aircraft position level.

2. We propose an efficient partitioning algorithm to decompose the optimization problem into many

smaller problems by partitioning flights and clustering demand simultaneously. It keeps the portfolio

optimization problem tractable by only including highly profitable and connected demand in a cluster

whose size is restricted by a threshold.

3. To the best of our knowledge, we are the first to solve a portfolio optimization model over a capacity

constrained air cargo flight network, and provide numerical results and sensitivity analyses. Thus, we

combine revenue and risk in the same model and algorithm.

The structure of our paper is as follows. Section 2.2 describes the portfolio optimization problem for

the mid-term allocation process, and Section 2.3 presents the partitioning algorithm. A simulator used to

evaluate the performance of the allocations is provided in Section 2.4. The case study is discussed in Section

2.5. We conclude our paper in Section 2.6.



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 49

2.1.1 LITERATURE REVIEW

Although only a few works capture allotments, and none of them handles ULD exactly with load positions,

we aim to provide a brief yet concise literature review on materials related to the short-term and mid-term

capacity allocation processes, underlying models, and solution algorithms.

Kasilingam (1997) discusses the role of demand forecasting, capacity forecasting, allotment allocation,

and overbooking in the overall capacity allocation process. In addition, he provides an overbooking and

bucket allocation models. Different from ours, his model allocates capacity to demand buckets, and includes

probabilistic chance constraints that can be linearized to model service level requirements. No demand

correlation is considered. A similar overview can be found in Slager and Kapteijns (2004), who discuss

implementation challenges of a cargo RM system, and several major differences between RM in cargo and

passengers.

Hellermann (2004) considers an allotment contract as an option with reservation and exercise fees. His

analysis focuses on parameters, structures, and optimality conditions for both the carrier and shipper models.

The carrier model maximizes the total return by determining the optimal reservation and exercise fees, which

are then fed to the shipper model to obtain an optimal capacity allocation. He also provides an analysis of

the integrated model. However, all the models are single-leg and cannot be extended to capture the cargo

network.

Amaruchkul et al. (2010) consider a capacity contract, which sets the allocation level, unit price for

the capacity used, and unit refund rate for the unused capacity. They express the expected contribution as

a utility function for a carrier and a shipper separately. The utility functions are then combined to yield

a stochastic optimization model that maximizes the total contribution subject to an incentive compatibility

constraint and a shipper contribution lower bound. Their problem is also single-leg, and it is inapplicable in

a network setting.

Karaesmen (2001) formulates the simplified version of the spot market allocation problem by a con-

tinuous linear programming problem. She assumes a single shipment type, and shows that solutions to a

sequence of linear problems converge to an optimal solution of the continuous linear programming prob-

lem, so do the bid prices, which can be computed by an approximation algorithm. Her result is theoretically

interesting but cannot be extended to capture allotment requirements.

Popescu (2006) investigates a spot market allocation problem with backlogs and positive lead time. She



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 50

divides demand into two groups and designs a different model and algorithm for each group. She also

considers cases of her model with one and two time lags, and shows that the optimal allocation, if exists,

is a deterministic stationary allocation. Her theories and algorithms are developed directly based on the

traditional network RM for passengers (see Talluri and van Ryzin (2004)), and no demand correlation and

allotments are considered.

Luo et al. (2009) study the spot market allocation problem in weight and volume while accounting

spoilage and offload costs. They analyze the model in terms of booking acceptance regions, which can

be circular or rectangular. However, their model is single-leg, and the proposed controls are difficult to

implement and store in an information system.

Pak and Dekker (2004) present a dynamic programming (DP) problem to allocate capacity for the spot

market. The problem is constrained by flight capacity in both weight and volume. They approximate the

value function by a standard knapsack problem, which is further approximated by an ordering algorithm that

efficiently generates a set of bid-prices. Amaruchkul et al. (2007) propose several heuristics to decompose

and approximate the value function of a DP for the spot market. The DP they model is similar to the tradi-

tional passenger RM problem with multiple classes (see Curry (1990), Wollmer (1992), and Brumelle and

McGill (1993)). They empirically show that their heuristics perform well. Both Pak and Dekker (2004) and

Amaruchkul et al. (2007) address the short-term allocation problem using DP to construct a better allocation

policy. However, extending their models to capture allotments significantly increase the complexity of the

problem.

Chew et al. (2006) also study a single-leg short-term allocation problem. They focus on updating the

allocation as departure approaches. The problem decides how much extra space should be allocated and

which shipments should be backlogged in order to minimize the expected cost. Relying on convexity of the

cost function, they are able to efficiently construct an optimal solution. Their model is also similar to the

traditional passenger RM problem with multiple classes. Hence, it inherits drawbacks similar to the DP in

Amaruchkul et al. (2007) and it is a single-leg problem.

Levina et al. (2011) investigate the short-term allocation problem at the network level given the remain-

ing capacity not reserved for allotments. They basically capture all the risk components in the spot market,

and propose a simulation-based approach to approximate the optimal allocation. Nonetheless, they do not

consider the interaction between the allotments and spot market demand, and adding allotments to their

existing model appears to be nontrivial.



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 51

Levin et al. (2012) model the capacity allocation problem for a particular origin-destination pair at

multiple stages. At the first stage, a mixed integer programming problem is solved to optimally select

allotment bids. At the second stage, a DP is run to accept and reject spot market booking requests given the

remaining flight capacity. Demand is assumed to be independent. At the final stage, a different model is

applied to offload undesirable confirmed bookings. By relaxing the weight and volume capacity constraints

of the offloading problem, they obtain an upper bound problem to approximate the original problem that is

difficult to solve. Furthermore, the upper bound problem naturally returns a set of bid prices for the spot

market. Our work is different in that we allow any pair of demand to be dependent, and we do not rely on

solving DPs that are often intractable given a large air cargo network. Instead, we model the problem as a

portfolio optimization problem to capture all necessary allocation requirements and demand correlation.

In summary, all past works either are single-leg and not easily extendible to a network setting, or assume

independent demand at the network level, or handle the spot market and allotment decisions separately. In

addition, they neglect important aspects of ULDs and their positioning requirements on aircraft.

2.2 PROBLEM DEFINITION

For the mid-term capacity allocation process, we model the underlying cargo capacity allocation problem

as a portfolio optimization problem to accept profitable and stable capacity requests and assign their ULDs

to aircraft positions. The problem has integer decision variables and a quadratic objective. It minimizes

the demand covariance computed based on historical capacity misutilization (over/under-utilizing) of the

allotments, forecasting inaccuracy of the spot market demand, as well as the correlation between these two

variabilities, and subject to all capacity allocation requirements and a revenue lower bound.

We define demand at the origin-destination level, and each demand unit is either an allotment bid or a

spot market capacity request. While an allotment bid is counted in weight, volume, and the number and

types of ULDs, and consumes capacity over multiple flights over time, spot market demand is a single

shipment and is counted only in the units of weight and volume. We add an auxiliary ULD corresponding

to the spot market (details provided later). Each demand unit is assumed a fixed rate, i.e. price per weight

unit, and a set of available itineraries. For a demand unit, it is allowable to accept only a subset of ULD

requests. A single demand unit can be routed through several itineraries. In the case that a demand unit only

provides a shipment deadline, any itineraries before the deadline can be selected. Capacity of an aircraft is



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 52

counted in the number of positions available for a specific position type, and each aircraft has many types

of positions available dependent on its configuration. Each ULD may consume multiple positions and vice

versa, and there are restrictions on the types and number of ULDs that can be loaded on a given position

type. To describe the problem, let us define the following sets:

• d ∈ D set of demand units, where d can be an allotment bid or a spot market capacity request,

• i ∈ ID(d) set of itineraries for demand unit d,

• i ∈ IDF (d, f) set of itineraries for demand unit d that use flight f ,

• p ∈ P (f) set of position types available on flight f ,

• u ∈ UD(d) set of ULD types requested by demand unit d,

• u ∈ UP (p) set of ULD types that is compatible with position type p,

• u ∈ UF (f) = ∪p∈P (f)U
P (p) set of ULD types that can be loaded on flight f ,

and decision variables:

• xdiu (integer) number of type-u ULDs of demand unit d accepted on itinerary i,

• yfpu (integer) number of type-u ULDs assigned to position type p on flight f .

Additionally, we define the following coefficients:

• ddu number of type-u ULDs requested by demand unit d,

• nfp number of type-p positions available on flight f ,

• rdi unit revenue for carrying each unit of weight of demand unit d on itinerary i,

• wf available weight on flight f ,

• vf available volume on flight f ,

• ρwdu unit weight for each type-u ULD of demand unit d,

• ρvdu unit volume for each type-u ULD of demand unit d,

• ρPu number of positions required to accommodate each unit of type-u ULD,

• σ(d, d′) covariance of demand units d and d′ measured in weight,

• τwu tare weight of a type-u ULD,

• τvu tare volume of a type-u ULD.

Furthermore, let ϕ be a lower bound on the risk neutral revenue (we will explain later how it is derived).



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 53

Formally, the capacity allocation problem (CAP) is

CAP ∗ = min
x,y integer

∑
d∈D

∑
d′∈D

σ(d, d′)

⎛
⎝ ∑

i∈ID(d)

∑
u∈UD(d)

rdiρ
w
duxdiu

⎞
⎠
⎛
⎝ ∑

i∈ID(d′)

∑
u∈UD(d′)

rd′iρ
w
d′uxd′iu

⎞
⎠
(2.1)

subject to

∑
d∈D

∑
i∈ID(d)

∑
u∈UD(d)

rdiρ
w
duxdiu ≥ ϕ (2.2)

∑
d∈D

∑
i∈IDF (d,f)

∑
u∈UD(d)

ρwduxdiu +
∑

p∈P (f)

∑
u∈UP (p)

τwu yfpu ≤ wf f ∈ F (2.3)

∑
d∈D

∑
i∈IDF (d,f)

∑
u∈UD(d)

ρvduxdiu +
∑

p∈P (f)

∑
u∈UP (p)

τvuyfpu ≤ vf f ∈ F (2.4)

∑
d∈D

∑
i∈IDF (d,f)

xdiu ≤
∑

p∈P (f)

yfpu u ∈ UF (f), f ∈ F (2.5)

∑
u∈UP (p)

ρpuyfpu ≤ nfp p ∈ P (f), f ∈ F (2.6)

∑
i∈ID(d)

xdiu ≤ ddu u ∈ UD(d), d ∈ D. (2.7)

Objective function (2.1) minimizes the covariance between each pair of accepted demand units. Since

each unit of weight is not valued the same for each demand unit, the associated unit rate is multiplied. The

objective can also be modified to capture covariance in volume or volumetric weight (see DHL (2012)),

and doing so will not significantly affect the solution as the density of the demand is fixed. Thus, variation

in weight corresponds to variation in volume, and vice versa. Constraint (2.2) imposes the revenue lower

bound for a given revenue level ϕ. Constraints (2.3) and (2.4) are the weight and volume upper bounds on

each flight. If an ULD of a specific type is used, its tare weight and volume are added. In layman’s terms,

the left-hand side sums the weight (volume) of the demand accepted and tare or empty weight (volume)

of ULD’s used. Constraints (2.5) convert the acceptance decisions xdiu to the allocation decisions yfpu.

Constraints (2.6) are the upper bounds on the number of positions for each position type on each flight,

and constraints (2.7) are the demand upper bounds at the ULD level. Other business requirements such as

total tonnage upper and lower bounds at the origin-destination and flight levels are implemented but not

presented.

To describe how the covariance is estimated, let us refer to the status of a cargo shipment provided by

a shipper but not yet shipped as tendered, and the weight of a tendered shipment as tendered weight. We



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 54

define swdt to be the tendered weight of demand unit d on historical date t, μw
d to be the targeted weight as

anticipated by the bid of demand unit d, and T (d, d′) to be the set of shipping dates that both demand units d

and d′ have shipping records. The targeted weight is the weight granted for the allotment, and is the weight

forecast for a spot market demand unit. The covariance between demand units d and d′ is estimated based

on σ(d, d′) = (
∑

t∈T (d,d′)(s
w
dt − μw

d )(s
w
d′t − μw

d′))/|T (d, d′)|.
In our implementation, we additionally introduce two new ULD types. The first type corresponds to

bulk cargo that cannot be fitted into any ULDs, and the second type is to hold spot market demand for which

only the amount of weight and volume are available at the beginning of the mid-term allocation process. As

a consequence of the first ULD type, a new position type is added to represent the bulk compartment on the

aircraft. The second ULD type requires the density of the ULD to be demand dependent, and hence, we use

ρwdu instead of ρwu for spot demand d.

In summary, CAP provides an optimal allocation policy that minimizes capacity misutilization of al-

lotments and spot market demand variability while maintaining an acceptable revenue level. However,

this problem is difficult to solve, since the covariance matrix is large, and an integer solution is required.

Although business experience and intuition help reduce the complexity of the problem, we approach the

problem in a general manner by imposing a block diagonal structure to the covariance matrix. This is done

by partitioning the set of all flights, and each set of flights in the partition implies a demand cluster. A

covariance matrix is then computed for each demand cluster, and the CAP is solved for each corresponding

subset of flights. Details are provided next.

2.3 SOLUTION METHODOLOGY

In this section, we discuss an algorithmic framework that decomposes the portfolio optimization problem

into many smaller problems, and each of these smaller problems has its own demand cluster and subset of

flights. The framework is illustrated in Figure 2.2. It starts by querying necessary information such as costs,

flights, spot market forecast, allotments, and business requirements from a database. A resource allocation

problem, the risk neutral problem discussed next, is solved first to yield a preliminary allocation solution.

This solution is then used to provide a direction for a partitioning algorithm to generate a flight partition

and a set of demand clusters. At the end, for each demand cluster, the covariance matrix is computed using

historical bookings and shipping records of the demand units within the cluster, and CAP is applied to each



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 55

corresponding set of flights to yield the final allocation that we evaluate though a simulator discussed later

in Section 2.4.

Cost information
Network information
Spot market forecast
Allotment forecast
Capacity forecast
Business requirements

Historical shipments
Historical bookings
Historical allotments/ 
contracts

Risk neutral 
problem

Problem
decomposition

Compute
covariances Covariance matrix

Demand clusters and 
flight partition

Portfolio
optimization Allocation policy

Preliminary allocation 
policy

Figure 2.2: Proposed algorithmic framework for problem decomposition.

2.3.1 RISK NEUTRAL PROBLEM

In order to provide a direction to partition flights and cluster demand, the risk neutral problem (RNP) is

solved. It is the same problem as the portfolio optimization problem, except that its objective is replaced by

the left-hand side of constraint (2.2). The modified problem maximizes the total allocation revenue without

accounting for demand covariances. Since RNP is to be solved over a long planning horizon, a rolling

horizon approach is implemented. This is accomplished by adding a time dimension to the decision variable

yfpu and changing the right hand side coefficients of constraints (2.3), (2.4), and (2.6) to the remaining

weight, volume, and number of positions, respectively. The complete model can be found in Appendix B.1.

Let τ be the length of the time window. For a given starting time t = 1, . . . , T , where T is the length of the

time horizon. Only demand units and resources in [t, t+ τ ] and across time t+ τ are considered. A demand

is classified as across-time t+ τ if it can be assigned to an itinerary that has a flight that departs before time

t + τ and arrives after time t + τ . Any demand units that have previously been accepted or rejected are

excluded from the current time window, and are used to update the capacity upper bounds before the RNP

for the current time window is solved. Once the incumbent problem is solved, only the solution at time t is

kept before moving the starting time from t to t+ 1. When t+ τ = T , all allocation decisions from T − τ

to T are kept.



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 56

2.3.2 PROBLEM DECOMPOSITION

To decompose CAP into many smaller problems, we partition flights and cluster demand units simultane-

ously. Our strategy is to group demand units by their contribution evaluated based on the optimal allocation

of RNP. The RNP can assign a demand unit to several different itineraries. If a demand unit is assigned

to multiple itineraries, and all these itineraries span several flight sets, this demand unit is assigned only to

the empty set. Otherwise, there is at least one itinerary of the demand unit that is contained in a flight set.

Among all such itineraries, we select the itinerary with the highest revenue based on the RNP solution and

assign the demand unit to the demand cluster corresponding to the underlying flight set of the itinerary. In

addition, this demand unit is also assigned to the empty set. Note that a demand unit can be simultaneously

assigned to a cluster and the empty set, but it cannot belong to two demand clusters at the same time. By

the definition of demand clusters, flights for each demand cluster are linked by itineraries. Each flight set

implies a demand cluster, and vice versa. In addition, there is an empty set demand cluster that does not

correspond to a flight set. At the end, CAP is solved for each flight set with the covariance matrix computed

based on the corresponding demand cluster.

Since our strategy groups demand units by their contribution, it does not guarantee that demand units are

heavily correlated within a cluster, or that demand units are independent across clusters. Although an optimal

clustering strategy would maximize the number of demand units that satisfy these two properties, it requires

each demand pair to be first examined before the covariance can be used for one of the clustering criteria.

The resulting long solution time and large storage requirement likely render such a strategy impractical. The

advantage of our approach is that if two profitable demand units in the same cluster are heavily correlated,

we are ensured that CAP has already accounted for their covariance when an allocation is made. Since high

revenue demand units are likely assigned to a cluster, their dependencies are captured by CAP.

To describe the partitioning problem mathematically, we define the following:

• DI = {(d, i) : i ∈ ID(d), d ∈ D} set of all demand-itinerary pairs,

• F set of all flights,

• DI(F ,D) set of demand-itinerary pairs that are formed by D ⊆ D, and each demand unit in D uses

flights exclusively in F ⊆ F ,

• K upper bound on the number of demand units in each cluster,

• R(DI) total revenue from RNP computed based on a set of demand-itinerary pairs DI ⊆ DI .



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 57

The decision variables of the partitioning problem are

• S total number of demand clusters (flight sets),

• Fs flight set corresponding to cluster s = 1, . . . , S,

• Ds(Fs) set of demand units assigned to cluster s given flight set Fs.

For a given solution, we define DI(∅) = DI\ ∪S
s=1 DI(Fs, Ds(Fs)). The partitioning problem reads

max
S

Fs,Ds(Fs),s=1,...,S

S∑
s=1

R(DI(Fs, Ds(Fs)))−R(DI(∅))

subject to

|Ds(Fs)| ≤ K s = 1, . . . , S (2.8)

Ds(Fs) ∩Ds(Fs′) = ∅ s �= s′ and s, s′ = 1, . . . , S (2.9)

Fs ∩ Fs′ = ∅ s �= s′ and s, s′ = 1, . . . , S (2.10)

∪S
s=1Fs = F. (2.11)

The objective is to maximize the total contribution of the demand-itinerary pairs over all clusters minus

the contribution of the demand-itinerary pairs in the empty set, which includes both the demand-itinerary

pairs that span across multiple flight sets, and the remaining demand-itinerary pairs formed by demand units

not in any cluster.

Given solution x̄ to CAP, we define R(DI) =
∑

(d,i)∈DI rdi
∑

u∈UD(d) ρ
w
dux̄diu. Since the total revenue

of RNP is fixed, maximizing the total contribution of demand-itinerary pairs is equivalent to minimizing the

contribution of the empty set. Thus, without loss of generality, the objective can be rewritten as

max
S,Fs,Ds(Fs),s=1,...,S

S∑
s=1

R(DI(Fs, Ds(Fs))),

which simply maximizes the total contribution over all demand-itinerary pairs in the clusters.

This partitioning problem is a large and complex integer programming problem, which is intractable

over the entire planning horizon. An efficient flight-based partitioning heuristic is developed to efficiently

retrieve a good solution.

The heuristic iteratively includes profitable flights into a flight set in question until the number of demand

units in the corresponding cluster exceeds K. It requires a feasible solution x̄diu as input to RNP, set of all



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 58

flights, and set of all demand-itinerary pairs. It starts a new flight set with the most profitable flight that has

not yet been included to any other flight sets, where profitability of a flight is defined by the total revenue

collected from the demand units assigned by RNP to the flight. The algorithm then iteratively adds profitable

flights so that more profitable demand-itinerary pairs can be assigned to that flight set. At the end, it returns

a flight partition and the corresponding demand clusters for each flight set in the partition. Note that the

solution returned by the heuristic is feasible to the partitioning problem, and if K = |D|, we simply obtain

a trivial partition that includes all flights.

To fully describe the heuristic, we define G(F ,D) to be the set of demand units that are not in D ⊆
D, and each demand unit in the set has been assigned by RNP to at least one itinerary that uses flights

exclusively in F ⊆ F . We also define Li to be the set of flights in itinerary i. The heuristic is presented in

Algorithm 3.

Algorithm 3 Flight-based Partitioning Heuristic

Require: x̄, F , and DI
1: Set s = 1
2: Set D̄ = D, F̄ = F and Fj = ∅ for j = 1, . . . , |F |
3: while F̄ is not empty do
4: Let f∗ = argmaxf∈F̄

∑
(d,i)∈DI:f∈Li,d∈D̄ rdi

∑
u∈UP (d) ρ

w
dux̄diu

5: Fs = Fs ∪ {f∗}
6: repeat
7: Set f̄ = argmaxf∈F̄

∑
(d,i)∈DI(Fs∪{f}),d∈D̄ rdi

∑
u∈UP (d) ρ

w
dux̄diu

8: Fs = Fs ∪ {f̄}
9: until |G(Fs, D̄)| > K

10: Ds(Fs) = G(Fs, D̄)
11: D̄ = D̄\G(Fs, D̄)
12: F̄ = F̄\Fs

13: s = s+ 1
14: end while
15: return Fj and Dj(Fj) for j = 1, . . . , s

Step 4 of Algorithm 3 selects the flight that contributes the most and initializes a new flight set with that

flight. In steps 6 - 9, we enlarge the flight set by iteratively including flights that bring highly profitable

demand-itinerary pairs. Step 10 updates the demand cluster Ds(Fs) accordingly. At the end, the algorithm

returns a flight partition and a demand cluster for each flight set in the partition, and its outcome defines the

empty set DI(∅).



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 59

2.3.3 PORTFOLIO OPTIMIZATION

Once the flight partition and demand clusters are found, both the capacity of the flights and demand units

in the cluster are adjusted accordingly by subtracting the portion of the demand on the demand-itinerary

pairs in the empty set. The corresponding decision variables {xdiu}u∈UD(d) are excluded before CAP is

applied to each flight set to produce an allocation policy. The allocation policies over all flight sets are then

combined to form the final allocation policy to be evaluated through a simulator, which we discuss next.

2.4 SIMULATION

We construct a simulator to evaluate the performance of the allocation policy returned by the CAP. The goal

is to evaluate the quality of the partition and thus of the fact that only certain covariances are considered.

The simulation is divided in two steps (see Figure 2.3).

Recall that the only uncertainty assumed is the difference between the weight in the bid and the actual

tendered amount. The first step is the shipment generation process that generates shipment weight samples.

We assume that weight is multinomial dependent. For spot market demand, we further assume that the

density is constant. Hence, a weight sample implies a volume sample. For each allotment shipment, given

a corresponding weight sample (we discuss how this is generated in the next paragraph), the weight of the

sample is proportionally distributed over all originally requested ULD types in the bid, where the proportion

is determined based on the required weights of the originally requested ULD types. Given the distributed

weight for each ULD type, the weight is then converted to the required number of ULDs.

The shipment weight sample generation process ideally requires means (historical) and the covariances

over all demand units. However, due to the fact that the covariance matrix is too large to be stored for

generating multinomial shipment weight samples, we, instead of using the covariance matrices computed

based on the existing clusters, swap demand units between clusters before shipment weight samples are

generated. This demand swapping process provides a fair evaluation of the partitioning heuristic while

avoiding the huge storage requirements associated with utilizing the entire covariance matrix. Specifically,

for each cluster, the simulator first randomly and uniformly selects some specified percentage of demand

units. The extracted demand units are then randomly and uniformly redistributed to other clusters. Note that

the number of demand units in each cluster can now go above the upper bound on the number of demand



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 60

units allowed in the cluster. After demand units are redistributed, a covariance matrix is computed for

each new cluster. Shipment weight samples are then generated using a multivariate normal random number

generator that takes the new covariance matrices as input. If demand units are not distributed, then sampling

would favor our partitioning heuristic and provide a biased assessment. For this reason, we randomly swap

demand units to sample “different parts” of the overall covariance matrix.

Step 1

Step 2

Input
Generate shipment 

arrival orders for 
spot orders

Shipment arrival 
samples

Allocation policy
(Decisions from CAP)

Flight capacity

KPIs

Demand
clusters

Randomly
redistributing demand 
units among clusters

New demand 
clusters

Compute covariance 
matrices

Covariance
matrices

Generate
shipment weight 

samples
Flight

partitions
Extract demand 

clusters

Collect revenue 
and compute KPIs

RNP

Figure 2.3: Simulator for Policy Evaluation

The second step generates the arrival orders of the shipments once shipment weight samples are ob-

tained. The arrival of a shipment is determined based on the first date that the shipment is available to be

shipped. Such a date can be identified by the earliest itinerary that can carry the shipment to its destination.

The shipments are then grouped by the dates that they arrive, and if there are multiple shipments on the same

date, the arrival orders of the shipments are randomized to generate the arrival samples.

With the given allocation policy and remaining flight capacity, the simulator collects revenue from each

shipment sample by assigning its requested weight, volume, and number of ULDs to all available itineraries

that are sorted by their operating costs in ascending order. A spot request might not be accepted by an

allocation policy, yet in operations, there might be sufficient buffer capacity to accept it, where the buffer

capacity is reserved to account for the volatility of the demand. In CAP, the buffer capacity is the capacity

not allocated to any demand unit. Such capacity is possible since the objective of CAP is not to maximize the

allocation revenue. Our simulation takes this into account by accepting spot demand without an allocation

using the buffer capacity. This essentailly injects the first-come-first-serve (FCFS) policy into the simulator,

and it is only appplied to demand units without an allocation.



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 61

Allocation
found?

Consume capacity in 
the allotment

Shipment weight 
sample

Shipment arrival 
sample

Yes Consume buffer capacity
(if necessary)

No

Record acceptance

Figure 2.4: Revenue collecting process

Figure 2.4 shows the revenue collection process in detail. The process begins with a shipment and checks

if an allocation for the shipment can be found from the existing allocation policy. If an allocation is found,

its capacity is then reduced until either the demand is fully accepted or no residual allocation remains. In

the latter case or when an allocation is not found, buffer capacity on each available itinerary is utilized to

carry the remaining spot demand by randomly choosing compatible positions. This is shown by the upper

arrow in Figure 2.4. At the end, the process records the acceptance information to compute the KPIs, and

the acceptance information includes the amount of weight and volume, the number of ULDs accepted for

each ULD type, and the number of positions consumed on each carrying flight.

The necessary KPIs used to measure the performance on the allocation policy are the total revenue, over-

tendered demand, and underutilized capacity. The revenue is computed based on the total shipped weight

of the demand multiplied by the underlying rate, and it is captured by the left-hand side of constraint (2.2)

instead of the risk-driven objective function of CAP. The overtendered demand is the positive difference of

the shipped demand and the weight specified by the bid of an allotment or expected weight of spot demand.

It measures how much of the overtendered demand is accepted and shipped not through the allocation policy.

The underutilized capacity is the positive difference of the allocation produced by the policy and the utilized

capacity. It measures if the allocation is sufficiently utilized. Although the best policy should maximize the

total revenue while minimizing both the overtendered demand and underutilized capacity, in practice when

underutilized capacity increases, overtendered demand tends to decreases, and vice versa. We discuss this

observation further in the next section.

2.5 COMPUTATIONAL STUDY

We test our proposed allocation policy using real-world data provided by a major cargo RM solution vendor.

It has two weeks of cargo data with over 200, 000 spot market demand forecasts, 100 allotments, 350, 000

itineraries, and 28, 000 flights. We benchmark our solution against the allocation policy used in practice,



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 62

which is obtained by solving the risk-neutral problem (RNP, see Section 2.3.1) without considering any

demand covariance. We want to see if the allocation policy obtained by discounting the risk-neutral revenue

to minimize the allocation risk can perform better than a risk-neutral allocation policy that does not consider

the risk component.

We solve the RNP in the rolling horizon manner with the rolling horizon window set to be 7 days (the

problem is too hard to be solved in one attempt over 14 days). For the CAP, the revenue lower bound ϕ in

constraint (2.2) is defined to be αz, where α is the revenue discount factor, and z is obtained by solving the

RNP without the rolling horizon.

An algorithm by Higham (2002) is implemented to find the nearest semi-positive definite covariance

matrix, where the distance is measured by the two-norm. This is to handle covariance matrices with negative

eigenvalues, which could happen due to rounding errors. In our experiments, this algorithm is run only for

a few clusters, whose corresponding covariance matrices have almost negligible negative eigenvalues.

We present the computational study in three parts. In the first two parts, we benchmarked the CAP

allocation policy against the RNP allocation policy. The first part demonstrates the performance of the

CAP allocation policy when it is used in practice, and its performance is evaluated by feeding the simulator

presented in Section 2.4 directly with historical shipments streams. Neither shipment weight and arrival

samples are generated, nor clusters are perturbed. To evaluate the effects of changing the revenue lower

bound, we vary the revenue discount factor α from 85% to 100% with an increment of 2.5%. Note that each

value of α corresponds to a different allocation solution, and when α is 100%, the underlying solution is the

RNP allocation policy that provides a baseline for comparisons. This range of α is selected as it is unlikely

that a carrier is willing to trade more than 15% off its potentially achievable revenue (if all shipments are

tendered as expected) to account for the risk.

The second part studies both the performance of the CAP allocation policy with a broader range of α and

the sensitivity of the allocation policy to the revenue lower bound and demand clusters. We run the simulator

to generate 100, 000 demand-swapping samples. For each of these samples, the simulator generates 100, 000

shipment weight and arrival samples. These large numbers of samples ensure that the effect of standard

errors is minimized and the results are at least 95% statistically significant. We test α from 55% to 100%

with an increment of 5%, and again, α = 100% corresponds to the RNP allocation policy. Furthermore, we

test the sensitivity of the CAP allocation policy on the demand clusters produced by the partitioning heuristic

described in Section 2.3. It is done by randomly swapping demand units across different clusters before the



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 63

clusters are used to generate shipment weight samples. Recall from Section 2.4 that demand swapping is

a strategy to avoid the use of the entire covariance matrix to generate shipment weight samples. We vary

β, the distribution factor that controls the percentage of demand units to be randomly extracted from each

cluster and uniformly distributed to other clusters, from 0% to 90% with an increment of 10%.

The last part reports the behavior of CAP when the revenue lower bound varies. Specially, we show how

both the objective value and the risk-neutral revenue computed using (2.2) change when α decreases from

100%. Furthermore, computational times required for each process in Figure 2.2 are also reported.

All experiments are conducted on a server with a 64-bit Window 2003 server operating system. Its CPU

is Intel Xeon(R) with four 2.67 GHz cores, and has 12 GB of RAM. The data is stored in an Oracle 11g

database. The implementation was coded in Java, and ILOG Cplex 12.3 is used for optimization.

2.5.1 HISTORICAL SHIPMENT RESULTS

Table 2.1 summarizes the results when historical shipment records are directly applied to the simulator using

the CAP allocation policies that correspond to various values of α. The revenue, overtendered demand, and

underutilized capacity are direct output of the simulator, and all percentages are computed using the output

of the RNP allocation policy.

Table 2.1: Performance summary when historical shipment records are directly applied.

Revenue Discount Factor 97.5% 95% 92.5% 90% 87.5% 85%

Revenue (%) 0.99 1.72 1.84 1.92 1.70 1.50

Overtendered Weight (%) 5.21 8.10 8.75 10.00 10.25 11.82

Overtendered Volume (%) 7.52 10.61 12.94 13.31 14.30 15.19

Underutilized Weight (%) -1.84 -5.44 -7.45 -13.06 -15.76 -17.37

Underutilized Volume (%) -0.68 -4.43 -8.94 -13.49 -14.76 -16.10

We observe that revenue can be improved close to 2% when α is set to be 90%. It means that it is

worthwhile to reserve some capacity for risk buffering, and the improvement gradually decreases in both

ends. Decreasing toward larger α is due to the fact that the allocation policy gradually becomes the RNP

allocation policy, which leaves no capacity unallocated. Decreasing toward smaller α is due to the heavier

usage of the first-come-first-serve policy (FCFS), i.e. without any control, as more capacity is set assigned

for risk buffering.

Overtendered weight and underutilized weight go in the opposite direction as α increases. When α in-



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 64

creases, allocation get reduced, and consequently, overtendered weight increases while underutilized weight

decreases. The trends are similar for both weight and volume.

2.5.2 SIMULATION RESULTS

We now present our simulation results and sensitivity analysis. Figure 2.5 shows the percentage of the

revenue change over RNP by using the CAP allocation policy for each selected value of α and β presented

in the beginning of this section.

55% 60% 65% 70% 75% 80% 85% 90% 95%
−4%

−3%

−2%

−1%

 0%

 1%

 2%

 3%

Revenue Discount Factor (α)

A
ve

ra
ge

 P
er

ce
nt

ag
e 

of
 R

ev
en

ue
 C

ha
ng

e

 

 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Dist. Factor (β)

Figure 2.5: Average percentage of revenue change over RNP

In general, the revenue improvement gradually increases when α increases and β decreases. The trend

of improvement is similar over all values of β. Several observations are worth mentioning.

1. The revenue change is not monotonic in α. Monotonicity is usually observed in traditional portfolio

optimization applications, in which no resources are shared at the network level except for a simple

budget constraint. Within the cargo network, due to integrality, and its flight capacity constraints,

monotonicity could not be expected.

2. Similarly, the revenue improvement is not monotonic in β. In fact, the best revenue improvement

is observed when β is set to be 10%, and the worst revenue improvement is obtained when β is set

to be 70%. These contribute to the fact that the partitioning algorithm (Algorithm 3) is a heuristic,

which does not cluster demand units by their correlation but by their risk-neutral revenue contribution.



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 65

Nonetheless, our results show that our partitioning heuristic works well and is relatively robust to β,

since even when the percentage of demand units being swapped is around 50%, and so long as α is at

least 85%, the revenue improvement is about 1%.

3. When α is less than 75%, our allocation policy is outperformed by the risk-neutral allocation policy

regardless of the value of β. The reason is that too much revenue is traded to reduce the total co-

variance, i.e., for anticipated uncertainty. This is also due to the fact that CAP naturally discourages

allocation, and the unallocated capacity is consumed in the FCFS manner, i.e. without any control,

and hence, the risk-neutral allocation policy ultimately prevails.

4. When α is no less than 85% and β is no more than 20%, we observe a revenue improvement about

2% on average by reserving a small amount of capacity and using it as a risk buffer, and as high as

3% of revenue improvement can be achieved, which could account for approximately $225, 000 per

week for major carriers.

We also measure the overtendered weight and underutilized capacity. Figure 2.6 shows the percentage

of overtended weight change over RNP. In general, the percentage of overtended weight increases when

less capacity is reserved. This is due to the fact that more demand units are pushed to be accepted via

FCFS. When β increases, the percentage of overtendered weight increases, as the allocated capacity may

not be well utilized due to demand swapping. Similarly to the average percentage of revenue change, the

percentage of the overtendered weight increases the least when β is 10%. Specifically, about 11% of demand

units are accepted on average via FCFS when α is no less than 85% and β is no more than 20%.

On the other hand, Figure 2.7 shows the percentage of underutilized weight change (a negative number

corresponds to a reduction of underutilized capacity). In general, the percentage of undertended weight

increases when α increases as more capacity is reserved for risk buffering. When more capacity is reserved,

the allocation becomes less, and hence, is more likely to be underutilized. Similarly, when β increases, the

percentage of underutilized weight increases. The reason is that the allocated capacity is not well utilized due

to demand swapping. Specifically, when α is no less than 85% and β is no more than 20%, the percentage

of underutilized capacity can be reduced by more than 15%.

For both overtendered weight and underutilized capacity, the trends are similar among different values

of β, and the same conclusions can be drawn when the overtendered demand and underutilized capacity are

measured in volume.



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 66

55% 60% 65% 70% 75% 80% 85% 90% 95%
10%

11%

12%

13%

14%

15%

16%

17%

18%

Revenue Discount Factor (α)

A
ve

ra
ge

 P
er

ce
nt

ag
e 

of
 O

ve
rt

en
de

re
d 

W
ei

gh
t C

ha
ng

e

 

 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Dist. Factor (β)

Figure 2.6: Average percentage change of over-

tendered weight

55% 60% 65% 70% 75% 80% 85% 90% 95%
−25%

−20%

−15%

−10%

−5%

 0%

 5%

10%

Revenue Discount Factor (α)

A
ve

ra
ge

 P
er

ce
nt

ag
e 

of
 U

nd
er

ut
ili

ze
d 

W
ei

gh
t C

ha
ng

e

 

 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Dist. Factor (β)

Figure 2.7: Average percentage change of underuti-

lized weight

2.5.3 CAP OPTIMIZATION RESULTS

Lastly, we present results on how the objective of CAP and its total revenue, computed based on the left-

hand side of constraint (2.2), change when different revenue lower bounds are set. Figure 2.8 illustrates

the percentage of revenue reduced for different revenue discount factors, where the percentage is computed

using the revenue obtained when α is set to be 100%. It shows that the revenue reduced decreases in a

concave manner when α increases. This implies that as the revenue discount factor decreases, the allocation

does not have to change as much in exchange for a lower total covariance, and similar revenue levels can

be kept albeit decreasing slowly. This is due to the fact that the allocation policy, instead of experiencing

substantial changes, is simply reduced to further minimize the objective of CAP when α gradually decreases.

On the other hand, Figure 2.9 shows the percentage of the total covariance reduced when α varies. The

covariance reduction curve behaves similarly to the revenue reduction curve that it is concave and decreasing

in α. This is again resulting from the fact that reducing revenue lower bound further does not significantly

changes the underlying allocation policy, and hence, the total covariance is not reduced as much.



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 67

55% 60% 65% 70% 75% 80% 85% 90% 95%
 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

Revenue Discount Factor (α)

P
er

ce
nt

ag
e 

of
 R

ev
en

ue
 D

is
co

un
te

d

 

 
% of Revenue Reduced
Revenue Lower Bound

Figure 2.8: Percentage of revenue reduced

55% 60% 65% 70% 75% 80% 85% 90% 95%
20%

30%

40%

50%

60%

70%

80%

90%

100%

Revenue Discount Factor (α)

P
er

ce
nt

ag
e 

of
 R

is
k 

R
ed

uc
ed

Figure 2.9: Percentage of covariance reduced

Finally, the running time is about 10 minutes for the risk neutral problem, 20 minutes for the flight

partitioning algorithm, and 20 minutes for the CAP over all clusters. Note that the running time of CAP is

only twice of the running time for the risk neutral problem. The reason is that multi-thread computing is

applied to each demand cluster. However, no parallelization scheme is available to the risk neutral problem

due to the solution dependency on the rolling horizon framework.

In summary, the running time for a six month period should be about 13 hours which shows that our

proposed algorithm framework is practical.

2.6 CONCLUSION

In conclusion, we have developed a framework to solve a difficult optimization problem that considers the

interaction between allotments and spot market demand, accepts demand at the ULD level, and allocates

flight capacity at the aircraft position level. Through conducting a set of comprehensive simulation exper-

iments using a real world dataset provided by a major solution vendor, we demonstrate the practicality of

our optimization framework, and show that revenue can be improved by 2% when interaction between de-

mand can be captured, which can be translated to a substantial saving of $150, 000 per week for major cargo

carriers.

During this study, we have identified several future directions to extend this research. One interesting

direction is to derive a way to obtain a bid-price at the aircraft position level. Another direction is to extend



www.manaraa.com

CHAPTER 2. AIR CARGO ALLOTMENT PLANNING 68

the problem to capture the stochasticity nature of the demand, and derive an efficient algorithm to solve it.

Lastly, improving the partitioning algorithm may provide a more robust solution to various parameters we

have tested.



www.manaraa.com

69

Chapter 3

AIRLINE INTEGRATED RECOVERY

Airline operations recovery has to be invoked frequently in daily operations, it

can be costly and can be triggered by any factor that prevents resources (aircraft,

crews, and passengers) from flying as planned. The goal is to efficiently resume

regular operations while minimizing the recovery cost. However, due to the size and

complexity of the recovery operations, the schedule for each resource is recovered

separately and sequentially in practice. We study a fully integrated recovery problem

and solve it by Benders decomposition. Specifically, the master problem delays and

cancels flights, assigns an equipment to each open flight, and selects maintenance

schedules for aircraft to commit. The first Benders subproblem routes each aircraft

to fulfill the selected maintenance schedules, while the second subproblem assigns

each cockpit crew and flight attendant to a roster that satisfies all work rules. Both

subproblems provide Benders cuts to the master problem to iteratively improve the

recovery solution. Multiple modeling and algorithmic strategies are proposed to

efficiently solve the aircraft subproblem and generate feasible rosters for the crew

subproblem. We tested our integrated recovery algorithm on a real world data set

over multiple large disruption instances, and compared it with an existing partially

integrated solution used in practice. The revenue improvement can be up to 8%, which

accounts for one million dollars in saving per disruption.

Key words: airline recovery, multi-commodity flow, Benders decomposition.



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 70

3.1 INTRODUCTION

Irregular operations are inevitable for airlines with thousands of daily flights, and cost the airlines consider-

ably to resume regular operations. According to RITA (2012a), only 84% of flights in 2012 were on time.

With a very tight revenue margin, airlines actively seek advance methods to further reduce the recovery

cost. Irregular operations lead to flight delays and cancellations, and may be caused by adverse weather

conditions, an irregular aircraft maintenance, terminal gate unavailability, or even crew sick leave. A delay

on a flight may delay all of its connecting flights that share the same resources (aircraft, crew members, or

passengers). Consequently, the residual effect is propagated, and the affected zone is enlarged. To further

exacerbate the situation, a connecting flight needs to be canceled when its inbound flight has been delayed

sufficiently long, and the connection time for a resource becomes illegally short.

We call any resource disrupted if its original schedule can no longer be executed, and recovered if the

disrupted resource is assigned with an alternative schedule that resumes its regular operations before the end

of the recovery time window. In addition, a leg is either a flight or a delayed flight copy with a different

arrival time and departure time, a maintenance event is a scheduled maintenance for an aircraft based on

the planned schedule, a maintenance schedule is a possible alternative time and location for a maintenance

event (a maintenance event can have several alternative maintenance schedules). Since the recovery time

window is short, we assume that an aircraft has at most one maintenance event in the time window. On the

crew side, a crew member is either a cockpit crew member or a flight attendant, a crew is the set of crew

members needed to operate an equipment assigned to a flight, and a segment in a roster of a crew is either a

leg or non-flying event (e.g. day-off, sick leave, training, etc).

When flight schedules are disrupted, the operations control center (OCC) of an airline strives to re-

sume regular operations in a relatively short time while minimizing the recovery cost. A fully integrated

recovery problem is composed of a schedule recovery problem and three resource recovery problems with

linking constraints. The schedule recovery problem considers curfew compliance, slot requirements, and

gate availability. It reassigns fleets or equipments of different capacity to undisrupted and delayed flights

to accommodate disrupted passengers. It can also cancel flights if by doing so, other resources can be suc-

cessfully recovered. Once the schedule recovery problem is solved, the aircraft recovery problem reroutes

disrupted aircraft of the same equipment to satisfy mandatory maintenance subject to maintenance capacity

constraints. Given a set of aircraft routes, the crew recovery problem then reassigns each disrupted crew



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 71

member to a different roster while satisfying all work rules. Reserve and stand-by crews may also be uti-

lized. Lastly, the passenger recovery problem assigns disrupted passengers to different itineraries so that

they can be carried to their final destinations without much delay. Although all the recovery problems can

be integrated and solved at once, an OCC operator solves them sequentially due to the complexity and

combinatorial nature of the integrated recovery problem.

Since the crash of Colgan Air in 2009, by the end of 2011 the Federal Aviation Administration finalized

rule changes about pilot fatigue to improve the working conditions of pilots on duty. The cost for each

airline to accommodate the new work rules is estimated to be about $300 million over the next decade. This

heavy burden is in addition to a fine of $27, 500 per passenger for a tarmac delay over three hours. Thus, an

integrated recovery module that further reduces the recovery cost is instrumental in improving the revenue

margin of the airlines.

The problem that we address is to recover disrupted flight schedules in the least costly manner given a

recovery time window. A flight schedule is considered recovered if the underlying resources for all flights

to depart in the time windows are available by the time of (delayed) departure. Our work follows Lettovsky

(1997), who proposes a model for the fully integrated recovery problem and the use of Benders decom-

position due to the block diagonal structure of his model. In his decomposition framework, the schedule

recovery problem is treated as the master problem while the aircraft, crew, and passenger recovery prob-

lems are the subproblems and solved sequentially. The linkage is by the equipment assignment to flights.

Once the master problem is solved, the aircraft and crew recovery problems can be run in parallel for each

equipment. If a subproblem is infeasible, the master problem is solved again with a new feasibility cut gen-

erated. Otherwise, an optimality cut is added to the master problem, and the next subproblem is considered.

The procedure is repeated until the reduction in cost is minimal, or a time limit is reached. At the end, a

special branching rule is proposed to obtain an integer solution. Lettovsky (1997) exhibits the model and a

conceptual algorithm, but no implementation and computational studies are provided. We are confident that

out-of-the-box Benders decomposition with path-based subproblem formulations does not scale.

Recently, Peterson et al. (2012) has published a similar effort on the fully integrated recovery problem.

However, they model the schedule and resource recovery problems using strings proposed by Barnhart et al.

(1998) and consider only the passenger recovery costs. As the aircraft and crew recovery problems are

solved after the passenger recovery problem, their Benders algorithm is geared towards passenger recovery.

In this paper, we propose a model for the fully integrated recovery problem along with the underly-



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 72

ing solution methods. Although we rely on the same Benders decomposition as in Lettovsky (1997), we

model the recovery problems differently in order to have scalability. Specifically, we modify the schedule

recovery problem so that it, in addition to assigning equipments and selecting flight copies, also determines

an alternative maintenance schedule for each aircraft maintenance event. Given the equipment assignment

and selected maintenance schedules, we split the aircraft recovery problem into two multi-commodity flow

problems. While the first flow problem determines the flow of the aircraft having similar maintenance re-

quirements, the second flow problem constructs new aircraft routes given the flow. Furthermore, we develop

innovative strategies and algorithms to reduce the running time for crew recovery, which is often regarded

as the bottleneck of the recovery operations. At the end, we present numerical results for multiple large

disruption instances based on a real-world dataset provided by a solution vendor.

Our contributions are the following.

1. We model the aircraft recovery problem as a multi-commodity flow problem, where the commodities

are defined by the disruption characteristics of the aircraft. This allows more complex and larger

problems to be solved as compared to the computationally intensive column generation type technique

in Peterson et al. (2012).

2. Our aircraft recovery problem is split into two subproblems. While the first subproblem determines the

flow of the aircraft having similar maintenance requirements, the second subproblem assigns aircraft

based on the flow provided by the first subproblem. It resolves the need for constructing feasible

aircraft routes apriori and allows large aircraft disruption instances to be handled with ease.

3. Our crew recovery problem captures both cockpit crews and flight attendants together with reserves. It

considers non-flying activities, assigns a roster to each crew member, and selects a crew rank for each

crew member on each operating flight that he or she is qualified. All these aspects are not captured

in the work of Peterson et al. (2012). In addition, special strategies and algorithms are developed to

efficiently generate alternative rosters that are likely to be selected.

The rest of the paper is structured as follows. Section 3.2 formally presents the mathematical details

for each recovery problem. Section 3.3 introduces the Benders decomposition framework. Section 3.4

elaborates the strategies and algorithms for reducing the running time. Section 3.5 reports the performance

of our fully integrated solution benchmarked against a partially integrated solution used in practice. We

conclude the introduction with a literature review.



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 73

3.1.1 LITERATURE REVIEW

We briefly discuss material closely related to our work starting with Lettovsky (1997), who models the

fully integrated recovery problem as a set covering problem and proposes the use of Benders decomposition

because of the inherent block diagonal structure of the model. He provides a conceptual Benders algorithm

at a hight level. However, no computational study has been performed. The main difference with our work

is that they consider a single fleet and fixed schedule (no delays). Including several fleets and changes in the

flight schedule significantly complicates the problem.

Bratu and Barnhart (2006) consider only the aircraft and passenger recovery problems with emphasis

on minimizing delays and cancellation costs. Dominating flight copies are identified to reduce the size of

the problem. The problem does not consider crew recovery. Maintenance requirements are enforced only

if they are violated after the aircraft recovery problem is solved. Since the aircraft and passenger recovery

problems are combined into one problem, no integration algorithm is necessary. However, the problem

remains complex, and the method is not applicable when crew recovery is required.

Chunhua (2007) discusses an application of her work on integrated planning to integrated recovery. She

proposes an integrated recovery model which is based on a dated fleet assignment model and a crew duty

flow model, and a preprocessor that determines the set of swappable aircraft and crew sets as well as flight

delay options by some predefined thresholds. However, no implementation details and computational results

are provided.

Different from mathematical programming approaches, Abdelghany et al. (2008) propose a simulation-

based tool that combines a schedule simulation model with a resource assignment optimization model to

minimize flight delays and cancellations during irregular operations. While the simulation model predicts a

set of disrupted flights based on the severity of anticipated disruptions, the optimization model finds possible

flight delays and resource swapping opportunities given the set of the disrupted flights. The tool relies on a

greedy algorithm and runs in a rolling horizon manner. However, it is approximate in nature, and does not

consider interaction between resources (e.g. a valid crew connection depends on the corresponding aircraft

routes).

A competition was set forth by ROADEF (see Palpant et al. (2009)) in 2009. It challenged researchers to

solve the integrated recovery problem without crew recovery. Bisaillon et al. (2011), who won the first place,

use a large neighborhood search heuristic to find a feasible solution. It begins by randomly selecting aircraft



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 74

to recover. The aircraft solution is then improved by delaying flights and solving shortest path problems to

accommodate additional disrupted passengers. When disruptions are primarily at the flight schedule level,

they significantly outperform Mansi et al. (2010), the second place team, who rely on a mixed integer model

to handle maintenance requirements and use an oscillation strategy to improve the initial feasible aircraft

solution. However, when aircraft and airport disruptions are abundant, the neighborhood search heuristic

is inferior, as it struggles to handle complicated disruptions. Adding the crew component to either method

nonetheless poses significant additional complexity and requires significant changes to the approaches.

The only fully integrated recovery attempt with a computational study is the work by Peterson et al.

(2012). Similar to Lettovsky (1997), they use the Benders decomposition and treat the schedule recovery

problem as the master problem. In addition, they allow the aircraft and crew recovery problems to be

solved separately for each equipment. However, different from Lettovsky (1997), they model the integrated

recovery problem by strings, solve the crew recovery problem at the crew member level, and accommodate

disrupted passengers before the aircraft and crew recovery problems are solved. All subproblems are solved

by column generation to generate feasible routes, rosters, and itineraries. They compare their integrated

solution with the sequential solution obtained by solving each resource recovery problem sequentially, and

show that a 50% cost reduction is possible for a one-hour single-hub closure scenario.

Although the approach of Peterson et al. (2012) is similar to ours at the high level, we do not rely on

string generation. In fact, because of our splitting scheme for the aircraft recovery problem, no strings or

routes are generated before the aircraft recovery problem is solved. This significantly reduces our solution

time without trading off optimality, and allows larger disruption instances to be solved. In crew recovery,

while Peterson et al. (2012) assume that each crew member is preassigned with one rank and can only serve

one equipment, we remodel the crew recovery problem to allow cross-equipment assignments and rank

substitutions. This extension is essential in practice, since crews and flight attendants are normally trained

to operate a set of equipments, and a captain can act as a first officer on a flight with a captain already

assigned.

3.2 PROBLEM DEFINITION

In this section, we describe our schedule, aircraft, crew, and passenger recovery problems in the order that

an operator at an OCC would have sequentially solved them during recovery. We show their dependencies



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 75

based on our integrated model and algorithm.

The process flow is illustrated in Figure 3.1. It begins by solving the schedule recovery problem (SRM)

given a disrupted flight schedule. With the optimal solution of the SRM, aircraft with similar maintenance

requirements are grouped. The aircraft recovery problem (ARM) is then solved for each group of the aircraft

to produce feasible aircraft routes. The solution of the ARM in turn is used by the crew recovery problem

(CRM). At the end, a recovering plan is produced after the passenger recovery problem (PRM) is solved.

This process is run multiple times until either the solution of the SRM is stable or a time limit is reached.

In each iteration, Benders cuts are generated after each subproblem is solved, and fed back to the SRM to

improve its solution.

Aircraft Recovery
Network 1: 

Similar Aircraft ARM

Network 2: 
Similar Aircraft ARM

Network 3: 
Similar Aircraft ARM

Crew Recovery

Disrupted Crew 
Members

CRM

Passenger Recovery

PRMDisrupted
Passengers

Equipment Assignment
Flight Delays
Cancellations
Alternative Maintenance 
Schedules

Feasible Aircraft Routes Feasible Crew Rosters

SRM

Feasible Aircraft Routes

Non-disrupted
Crew Members

Reserves and 
Standby Crew 

Members

Benders Cut

Benders Cut

Figure 3.1: Benders decomposition for integrated recovery.

In our framework, only the fleeting, and flight cancellation and delay decisions from SRM are propagated

to subsequent problems. An aircraft recovery solution can further cancel flights which affect the availability

of flights for crew recovery. Since SRM does not include the flight cancellation variables in aircraft recovery,

it is impossible for the crew recovery problem to pass back a Benders cut to the SRM including these

variables. For this reason, our crew recovery model considers only flights selected by the SRM. The same

holds for passenger recovery.

An alternative approach would be for the crew recovery problem to pass back Benders cuts to aircraft

recovery, and the passenger recovery problem back to crew recovery. This will likely create a Benders

algorithm with slow progress in initial iterations.



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 76

In our approach, SRM coordinates all of the remaining resource subproblems and thus makes significant

progress in initial iterations. Due to limited available computational time, a Benders algorithm can perform

only a dozen of iterations.

Besides the additional flight cancellation decisions, aircraft turns are another feedback between crew

and aircraft. Such cuts would have to be passed back to the aircraft recovery problem by crew. Since SRM

is our only ‘coordinator,’ we handle this heuristically by feeding the turns to crew recovery (with no cuts).

The remaining of this section is devoted to the aforementioned optimization models. We reuse notation

for each resource recovery problem, and define new notation whenever necessary. For ease of exposition,

only essential constraints are presented, and many business rules are omitted from the models but imple-

mented.

3.2.1 SCHEDULE RECOVERY PROBLEM

For a flight to depart successfully, all its resources need to be available by its departure. At the beginning

of the recovery process, flight copies are first generated to model delays. The schedule recovery problem

(SRM) is solved to assign an equipment to each open flight. Its solution may delay or cancel flights to

pave the way for better resource recovery solutions. In addition, for each flight, a different equipment may

be assigned to accommodate additional disrupted passengers to further reduce the recovery cost. We model

this problem as a multi-commodity flow problem, where each commodity corresponds to an equipment. The

problem maximizes the total recovery bonus by delaying and canceling flights, and selecting an alternative

maintenance schedule for each aircraft maintenance event (recall that an aircraft maintenance schedule is

defined by the location and time that the corresponding maintenance event takes place). By allowing al-

ternative maintenance schedules to be selected, we can split the aircraft recovery problem by aircraft with

similar maintenance requirement. Details will be discussed in Section 3.2.2.

The problem is subject to the usual network flow constraints (together with additional business con-

straints), and follows closely the principles from the basic fleet assignment model with flight copies. We

refer the reader to Klabjan (2005) or Sherali et al. (2006) to learn more about the station/time based network

and ground arcs. We refer to FA as flight assignment, FC as flight coverage, GA as ground assignment,

and M as maintenance. Let us define the following sets:

• e ∈ E set of equipments,

• a ∈ Ae set of aircraft of equipment e,



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 77

• f ∈ F set of scheduled flights,

• l ∈ Lf set of delayed copies for flight f (inclusive),

• l ∈ L = ∪f∈FLf set of legs,

• s ∈ S set of stations,

• t ∈ Ts = {1, . . . , |Ts|} set of arrival and departure time points at station s,

• m ∈ Ma set of maintenance events of aircraft a,

• ν ∈ MAlt
m set of alternative maintenance schedules for maintenance event m (inclusive).

The decision variables are:

• xFA
el = 1 (binary) if equipment e is assigned to leg l,

• 0 ≤ xGA
te ≤ |Ae| number of aircraft of equipment e positioned at time t ∈ Ts,

• xMν = 1 (binary) if alternative maintenance schedule ν is selected,

• xFC
f = 1 (binary) if flight f is canceled.

Let us also define the following coefficients:

• bFA
el bonus for assigning equipment e to leg l,

• bGA
te bonus for positioning an aircraft of equipment e at time t ∈ Ts,

• bMν bonus for choosing maintenance schedule ν,

• δPos
at = 1End

at −1Cur
at , where 1Cur

at (1End
at ) = 1 if aircraft a is currently available (needs to be positioned)

at time t ∈ Ts,

• δFA
lt = 1Arr

lt − 1Dep
lt , where 1Dep

lt (1Arr
lt ) = 1 if leg l departs (arrives) at time t ∈ Ts,

• δMνt = 1Fnh
νt − 1Srtνt , where 1Srtνt (1Fnh

νt ) = 1 if maintenance schedule ν starts (ends) at time t ∈ Ts,

• pFC
f penalty for canceling flight f .

Formally, the schedule recovery model (SRM) is

SRM∗ = max
∑
e∈E

∑
l∈L

bFA
el xFA

el +
∑
e∈E

∑
s∈S

∑
t∈Ts

bGA
te xGA

te +
∑
e∈E

∑
a∈Ae

∑
m∈Ma

∑
ν∈MAlt

m

bMν xMν −
∑
f∈F

pFC
f xFC

f

subject to

∑
l∈L

δFA
lt xFA

el +
∑

m∈Me

∑
ν∈MAlt

m

δMνt x
M
ν + xGA

t−1e − xGA
te =

∑
a∈Ae

δPos
at t ∈ Ts, e ∈ E, s ∈ S (3.1)



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 78

∑
e∈E

∑
l∈Lf

xFA
el + xFC

f = 1 f ∈ F (3.2)

∑
ν∈MAlt

m

xMν ≥ 1 m ∈ Ma, a ∈ Ae, e ∈ E. (3.3)

Constraints (3.1) are the flow balancing constraints which consider the number of aircraft arriving, de-

parting, undergoing maintenance, and on the ground. Constraints (3.2) state that each flight is either canceled

or covered by a leg with an equipment assigned. Constraints (3.3) require a maintenance schedule to be se-

lected for each maintenance event. The main difference with the standard fleet assignment model is the

presence of maintenance variable xMν . Furthermore, equipment positioning, slot and curfew restrictions,

and gate capacity are considered, where equipment positioning constraints ensure that each station is filled

with a required number of aircraft by the end of the recovery horizon, slot constraints restrict the number

of equipments flying in and out from the stations at several time periods, curfew restrictions forbid certain

aircraft to operate within a time window at a station, and gate capacity constraints guarantee enough gates

for all arriving aircraft plus aircraft on the ground at any station and time point.

3.2.2 AIRCRAFT RECOVERY PROBLEM

Once the schedule recovery problem is solved, each maintenance event is given a maintenance schedule, and

each flight may be delayed, canceled, or assigned with a different equipment. At this point, each operating

flights has a unique departure time, arrival time, and equipment type. The aircraft recovery problem (ARM)

is next solved to cover each operating flight and maintenance event by rerouting aircraft based on the flow

of the equipments and the maintenance schedules selected. In the end, each assigned route must allow its

aircraft to stay at the maintenance station for a time specified by the selected maintenance schedule, and to

be positioned at a designated station by the end of the recovery horizon.

Although the aircraft recovery problem is typically modeled as a set covering problem for computational

tractability, we model it differently by splitting it into two subproblems. The first subproblem is a multi-

commodity flow problem with aircraft being the commodity. Aircraft are of the same commodity if they

are assigned to the same equipment and have similar maintenance requirements. For every such group of

aircraft, we construct an underlying network of flights that these aircraft can operate. For this reason, there

is an one-to-one correspondence between the set of ‘similar’ aircraft and networks. Note that the aircraft

recovery problem is decomposed by equipment.



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 79

Specifically, in order to group the aircraft by their maintenance requirements, a longest path problem

for each aircraft is solved using a flight network constructed based on the equipment flow from the SRM.

One network is constructed for each equipment. A node in a network encodes the station, time, and activity

(arrival and departure), and each arc in the network is either a ground arc or corresponds to a leg. Two flight

arcs are connected by a ground arc only if the aircraft connection (turn) time in between is sufficient. The

cost of a path is the total flight time. While the source node corresponds to the first departure of the aircraft

in the recovery time window, the sink node corresponds to the beginning of the maintenance event with its

schedule selected by the SRM. If an aircraft traversing its longest path consumes all its remaining flight time

before its required maintenance, the aircraft is consider hot and assigned to a unique aircraft network. The

remaining aircraft are then grouped by their equipments and maintenance events.

The networks defined for the longest path problem are different from the networks used by the first

aircraft subproblem, although the definitions of a node and arc remain the same. The networks defined

above are only for grouping aircraft. They are at the equipment level, and the cost of a route only depends

on the total flight time. On the other hand, the networks for the first subproblem are defined at the aircraft

group level, and the cost of a route, detailed later, accounts for many other factors that allow the aircraft to

be routed economically.

Once the first subproblem is solved, and the optimal aircraft flow in each group is determined, the

second subproblem constructs an aircraft route for each aircraft while ensuring valid inbound and outbound

connections. By splitting the problem, we reduce the complexity of the problem, so that larger disruption

instances can be handled with ease. We also avoid the need to generate alternative aircraft routes on a large

network, and hence, significantly reduce the running time for aircraft recovery.

FIRST ARM SUBPROBLEM

For each aircraft network, the first ARM subproblem determines the aircraft flow subject to aircraft main-

tenance and positioning constraints. We refer to AA as aircraft assignment, SR as scheduled route, AI as

aircraft idle (unassigned), and OL as open leg with no aircraft assigned. Let us define the following sets:

• n ∈ Ne set of aircraft networks of equipment e,

• a ∈ ANet
n set of aircraft in network n,

• a ∈ ASch
l aircraft that uses leg l in its scheduled route,



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 80

• t ∈ Tns = {1, . . . , |Tns|} set of arrival and departure time points in network n at station s,

and the decision variables are:

• yAA
nl = 1 (binary) if leg l is assigned to network n,

• ySRa = 1 (binary) if aircraft a keeps its scheduled route,

• yMν = 1 (binary) if maintenance schedule ν is selected,

• 0 ≤ yGA
tn ≤ |ANet

n | number of aircraft positioned at time t ∈ Tns and station s,

• yOL
l = 1 (binary) if no aircraft is assigned to leg l.

In addition, we define the following coefficients:

• bSRa bonus for aircraft a to keep its scheduled route,

• bAA
nl bonus for covering leg l by aircraft in network n,

• δSRat = 1Arr
at −1Dep

at , where 1Dep
at (1Arr

at ) = 1 if aircraft a ∈ ANet
n is departing (arriving) at time t ∈ Tns

according to its schedule route,

• δAA
lt = 1Arr

lt − 1Dep
lt , 1Dep

lt (1Arr
lt ) = 1 if leg l departs (arrives) at time t ∈ Tns,

• δMνt = 1Fnh
νt − 1Srtνt , where 1Srtνt (1Fnh

νt ) = 1 if maintenance schedule ν ∈ MAlt
m for maintenance event

m ∈ Ma, a ∈ ANet
n starts (ends) at time t ∈ Tns,

• pOL
f penalty for not covering flight f .

Given a set of flight assignments xFA and a set of maintenance schedules xM produced by the SRM,

the first ARM subproblem for equipment e ∈ E is

FARM∗
e

(
xFA,xM

)
= max

∑
n∈Ne

∑
l∈L

bAA
nl yAA

nl +
∑
a∈Ae

bSRa ySRa +
∑

m∈Me

∑
ν∈MAlt

m

bMν yMν

−
∑
f∈F

pOL
f

⎛
⎝1−

∑
l∈Lf

yOL
l

⎞
⎠

subject to

∑
n∈Ne

yAA
nl +

∑
a∈ASch

l

ySRa + yOL
l = x̄FA

el l ∈ L (3.4)

∑
l∈L

δAA
lt yAA

nl +
∑

a∈ANet
n

δSRat ySRa



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 81

+
∑

m∈Me

∑
ν∈MAlt

m

δMνt y
M
ν + yGA

t−1n − yGA
tn =

∑
a∈ANet

n

δPos
at t ∈ Tns, n ∈ Ne, s ∈ S (3.5)

yMν = x̄Mν ν ∈ MAlt
m ,m ∈ Ma, a ∈ Ae. (3.6)

Constraints (3.4) ensure that each leg is either covered by a network, an aircraft on its scheduled route, or

a cancellation event. Constraints (3.5) balance flows in the network with arrival legs, departure legs, aircraft

on the ground, and aircraft that undergo maintenance. Constraints (3.6) require that each maintenance

schedule selected by the SRM is covered. In addition, aircraft remaining flight time, aircraft positioning,

maintenance resource, and station capacity requirements are implemented but not listed.

SECOND ARM SUBPROBLEM

The second ARM subproblem constructs routes for each individual aircraft while maximizing the assign-

ment bonus. In this case, the commodity in the multi-commodity flow problem is an aircraft. In the network,

each node is a leg, and an arc connects two nodes only if the turn time is satisfied. In addition, there is an

artificial leg corresponding to the selected maintenance schedule in the first ARM subproblem. At the end,

the problem produces a new aircraft route for each aircraft that are not idle. The problem is independently

solved for each network n ∈ Ne and e ∈ E. Let us define the following sets:

• COut
al set of feasible outbound legs from leg l if leg l is served by aircraft a,

• CIn
al set of feasible inbound legs to leg l if leg l is served by aircraft a,

• Ln(y = (yAA,ySR)) set of legs assigned to network n given an optimal solution y to the FARM

(this set also includes the maintenance artificial leg),

and the decision variable is wal, a binary variable that indicates if leg l is covered by aircraft a. In addition,

we define the following coefficients:

• 1Cur
al (1End

al ) = 1 if leg l is the first (last) leg of aircraft a,

• bal bonus for covering leg l by aircraft a.

Formally, the second ARM subproblem for aircraft network n ∈ N is

SARM∗
n(y) = max

∑
a∈ANet

n

∑
l∈Ln(ȳ)

balwal



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 82

subject to

∑
a∈ANet

n

∑
l′∈COut

al

wal′ +
∑

a∈ANet
n

1Cur
al wal = 1 l ∈ Ln(y) (3.7)

∑
a∈ANet

n

∑
l′∈CIn

al

wal′ +
∑

a∈ANet
n

1End
al wal = 1 l ∈ Ln(y) (3.8)

∑
l′∈COut

al

wal′ −
∑

l′∈CIn
al

wal′ + 1End
al wal − 1Cur

al wal = 0 l ∈ Ln(y), a ∈ ANet
n (3.9)

Constraints (3.7) and (3.8) require each leg to be covered by either an aircraft on the ground at the

beginning or end of the time horizon, or an aircraft from an inbound or outbound connection. Constraints

(3.9) are the flow balance constraints for each aircraft. In our implementation, we also include the starting

and ending positioning requirements for each aircraft, and we impose a penalty if a new route cannot be

constructed for an operating aircraft.

3.2.3 CREW RECOVERY PROBLEM

Given a set of aircraft along with their maintenance feasible routes, disrupted crew members are recovered

by assigning them to different rosters. We reiterate here that SRM provided feedback to crew recovery

albeit the fact that ARM might have canceled additional flights. Thus the set of all available flights and

the underlying departure times are based on the SRM solution. On the other hand, the second ARM finds

individual routes and thus aircraft turns. These are used in the crew recovery problem, but there is no

feedback back to the SRM in terms of aircraft turns.

Before the crew recovery problem is solved, a set of feasible rosters is generated for each crew member.

This is discussed in detail in Section 3.4.2. Roster generation considers all work rules, positioning require-

ments, fleet compatibility, rank substitutability, and potential use of reserves and standbys. In this section

we assume that each crew member has a set of feasible crew rosters, and next we discuss the model that

selects a single roster for each crew member.

A qualification is a set of similar equipments that a crew member is trained to operate. A rank of a crew

member can be captain, first officer, or flight attendant. A captain can serve as a first officer if a different

captain has already been assigned to a particular flight. However, a first officer cannot serve as a captain, and

flight attendants are not substitutable by other ranks. We refer to RC as roster coverage, DH as deadhead,

and OF as operating flights. Let us define the following sets:



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 83

• d ∈ D set of deck types (e.g. flight deck and cabin),

• r ∈ Rd set of crew ranks for a given deck type d, (If d refers to flight deck, Rd is typically {CA,FO}
for d being flight deck, and Rd is {FA} for d being cabin, where CA refers to captain, FO refers to

first officer, and FA refers to flight attendant),

• qe ∈ QE set of qualifications, and each qe is a subset of E,

• qr ∈ QRd
= {(CA,FO), (FO)} if d refers to flight deck, and QRd

= {(FA)} if d is cabin (these

sets represent all possible rank substitution),

• c ∈ C set of crew members,

• c ∈ COpr ⊆ C set of crew members on duty excluding reserves and standbys,

• v ∈ Vc set of all rosters for crew member c,

• l ∈ LCrw
v set of legs used by roster v,

and the decision variables are:

• zDH
l ≥ 0 number of deadheads on leg l,

• zRC
v ≥ 0 number of crew members covering roster v,

• zOF
el = 1 (binary) if leg l assigned with equipment e is operated.

In addition, we define the following coefficients:

• 1Qal
erc = 1 if e ∈ qe ∈ QE , r ∈ qr ∈ QR, and (qe, qr) = c ∈ C,

• bRC
v bonus for covering roster v,

• pCnl
l penalty for canceling leg l,

• pDH
l penalty for deadheading on leg l,

• nRnk
er number of crew members of rank r required on equipment e,

• M a large number.

Given a feasible solution xFA to the SRM, the crew recovery model (CRM) is

CRM∗(xFA) = max
∑
c∈C

∑
v∈Vc

bRC
v zRC

v −
∑
l∈L

pDH
l zDH

l −
∑
l∈L

pCnl
l

(
1−

∑
e∈E

zOF
el

)



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 84

subject to

∑
c∈C

∑
v∈Vc:l∈LCrw

v

1Qal
erc z

RC
v −

∑
r′	r

zOF
el nRnk

er′ ≥ 0 e ∈ E, r ∈ Rd, d ∈ D, l ∈ L (3.10)

∑
c∈C

∑
v∈Vc:l∈LCrw

v

zRC
v −

∑
e∈E

∑
d∈D

∑
r∈Rd

zOF
el nRnk

er = zDH
l l ∈ L (3.11)

∑
c∈C

∑
v∈Vc:l∈LCrw

v

zRC
v −M

∑
e∈E

zOF
el ≤ 0 l ∈ L (3.12)

∑
v∈Vc

zRC
v = 1 c ∈ COpr (3.13)

zOF
el = xFA

el e ∈ E, l ∈ L. (3.14)

Constraints (3.10) are the flight coverage constraints. For any operating flight of equipment e (i.e.

zOF
el = 1), the minimum number of crew members has to be satisfied for each rank. Summation condition

r′ � r represents the substitutability of rank r′ to rank r, but not vice versa (e.g. if r refers to first officer,

then the summation is over both captain and first officer, and if r refers to captain, then the summation is

only over captain). Constraints (3.11) count the number of crew members that are overflown (deadhead)

on each leg. These constraints consider all equipments that the crew member is trained to operate, and

allow a captain to dynamically change his/her rank depending on if a captain has already been assigned to

a particular flight. Constraints (3.12) ensure that no crews are on any canceled flight. Constraints (3.13)

imposes that each crew member on duty must be assigned a roster. Constraints (3.14) state that if the flight

has been canceled by the SRM, then the flight is unavailable to route crew members. In addition, the bonus

coefficient bNC
v accounts for the cost of utilizing reserves or standbys if v ∈ Vc, and c refers to a reserve

or standby crew member. A penalty is imposed if any crew member cannot satisfy his or her positioning

requirements by the end of the recovery horizon.

3.2.4 PASSENGER RECOVERY PROBLEM

After solving the schedule, aircraft, and crew recovery problems, any (delayed) flight with an aircraft and

crew assigned can be used to carry disrupted passengers. Passengers are disrupted if they cannot fly to their

destination on time. We model the passenger recovery problem as an assignment problem, which assigns

disrupted passengers of the same booking to different itineraries subject to flight capacity constraints.

We refer to PA as passenger assignment and SP as disrupted passenger, and define the following:



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 85

• b ∈ B set of bookings with a disrupted itinerary,

• i ∈ I set of all itineraries constructed based on all flight copies that are generated in the preprocessing

step to SRM,

• i ∈ Ib ⊆ I set of itineraries for booking b that can serve as a substitute to the original itinerary,

• l ∈ LPax
i set of legs used by itinerary i,

• bPA
ib bonus for carrying a passenger in booking b by itinerary i,

• Kel number of remaining empty seats on leg l that can be used to carry disrupted passengers if equip-

ment e is assigned,

• pSPb penalty for stranding passengers in booking b,

• nPax
b number of passengers in booking b.

The decision variable is uPA
ib , which is the number of passengers in booking b assigned to itinerary i ∈ I .

Given xFA a feasible solution to SRM, the passenger recovery model (PRM) is

PRM∗(xFA) = max
∑
b∈B

∑
i∈Ib

bPA
ib uPA

ib −
∑
b∈B

pSPb

⎛
⎝nPax

b −
∑
i∈Ib

uPA
ib

⎞
⎠

subject to

∑
b∈B

∑
i∈Ib:l∈LPax

i

uPA
ib ≤

∑
e∈E

Kelx̄
FA
el l ∈ L, (3.15)

where constraints (3.15) are the flight capacity constraints. If a flight is canceled (i.e.
∑

e∈E x̄FA
el = 0), no

passengers can be on board.

3.3 BENDERS DECOMPOSITION

In Section 3.2, we introduced the resource recovery problems that the OCC operator sequentially solves

during recovery operations. While the models were presented in a sequential manner modeling current

decision making process (while not providing the identical flow of information), it is easy to write a complete

integrated model by using the exhibited notation.

Figure 3.2 shows our Benders decomposition framework for solving the integrated recovery problem.

In order to get dual values, LP relaxations of subproblems are solved. In each iteration, before the LP

relaxation of ARM/CRM/PRM is solved, feasible rosters are generated. Optimality cuts are constructed



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 86

based on the dual of the constraints that tie the SRM and the resource recovery problem together (details to

be discussed later). The cut is then added back to the SRM for the next Benders iteration. Optimality cuts

ensure that the solution of the SRM will not lead to a higher integrated recovery cost (lower recovery bonus

in our case). Since the resource recovery problems are solved as LP relaxations, a post-processing step

(branch-and-bound) based on the schedules and routes obtained is required to obtain an integer solution.

ARM

CRM

PRM

SRM

Aircraft Assignment

Equipment AssignmentBenders Cuts Benders Cuts

Figure 3.2: Benders decomposition for integrated recovery.

For aircraft recovery, the LP relaxation of the FPRM is solved to yield the dual solution required to

construct the optimality cut. The procedure then computes an optimal integer solution, which is then fed to

the SARM to construct new aircraft routes. Let {πFA
el }l∈L be the duals of (3.4), {πM

m }m∈Me the duals of

(3.6), and let θARM∗
e the Benders dummy variable for equipment e ∈ E to be added to the SRM. Formally,

the optimality cuts are

FARM∗
e (x

FA,xM )−
∑
l∈L

πFA
el xFA

el −
∑
a∈Ae

∑
ν∈Ma

πM
ν xMν

+
∑
l∈L

πFA
el xFA

el +
∑
a∈Ae

∑
ν∈Ma

πM
ν xMν ≥ θARM∗

e for e ∈ E.

We subtract the total dual amount from the primal objective value, and use the duals to pair with the

decision variables of the master problem. On the other hand, if the relaxed problem is infeasible, slack

variables are added to (3.6). The objective of the FARM is now to minimize the sum of the slacks. The

duals are now interpreted as extreme rays that guide the FARM to a feasible solution. The formula for

the feasibility cut is essentially the same as that for the optimality cut except that θARM∗
e is replaced by 0.

Infeasibility can occur if no route can be assigned to an aircraft. If FARM
∗
e(x

FA,xM ) is the optimal value

of the feasibility problem for an equipment e ∈ E, then the ARM feasibility cut is



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 87

FARM
∗
e(x

FA,xM )−
∑
l∈L

πFA
el xFA

el −
∑
a∈Ae

∑
ν∈Ma

πM
ν xMν

+
∑
l∈L

πFA
el xFA

el +
∑
a∈Ae

∑
ν∈Ma

πM
ν xMν ≥ 0.

For crew recovery, the LP relaxation of the CRM is solved to obtain the dual values associated with

(3.14), which are then used to construct the optimality cut. Let {λFA
el } be the duals of (3.14), and θCRM∗

be

the Benders dummy variable. The CRM optimality cut is

CRM∗(xFA)−
∑
l∈L

∑
e∈E

λFA
el xFA

el +
∑
l∈L

∑
e∈E

λFA
el xFA

el ≥ θCRM∗
.

Similarly to the ARM, when CRM is infeasible due to inability to assign a roster to an on-duty crew

member, we solve the corresponding feasibility problem. A slack variable is added to (3.14). The objective

function is changed to minimize the sum of the slacks, and the duals become the extreme rays.

Note that PRM is always feasible. We only need to consider optimality cuts. Let {γFA
l } be the duals of

(3.15), and θPRM∗
the Benders dummy variable. The PRM optimality cut is

PRM∗(xFA)−
∑
l∈L

∑
e∈E

γFA
l xFA

el +
∑
l∈L

∑
e∈E

γFA
l xFA

el ≥ θPRM∗
.

Finally, the master problem becomes

maxSRM +
∑
e∈E

θARM∗
e + θCRM∗

+ θPRM∗

subject to all the aforementioned Benders cuts and non-negativity of all the Benders dummy variables. In

each iteration, depending on the feasibility of the resource recovery problems, feasibility and optimality cuts

are added. The cuts are kept over all Benders iterations, and can also be iteratively removed based on the

validity check in Peterson et al. (2012).

3.4 IMPLEMENTATION

3.4.1 FLIGHT COPY GENERATION

In order to successfully recover the resources, flights can either be delayed or canceled. While flight can-

cellation is usually the last resort as the associated cost could be steep, delaying flights is very common.



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 88

In order to delay flights, flight copies are generated at the beginning of the recovery process. For each re-

source, if a misconnection is found in its route/roster/itinerary, a delay copy of the disrupted flight is created

by delaying the disrupted flight minimally to resolve the misconnection. If the flight is delayed sufficiently

long to induce a misconnection to the outbound flight operated by the same resource, then a delayed flight

is similarly generated for the outbound flight.

3.4.2 CREW ROSTER GENERATION

To recover disrupted crew members, a roster generator is run to generate alternative rosters for each crew

member who may be affected (directly or indirectly) by the disruption. A disrupted crew has at least one

disrupted flight, and his or her roster cannot be repaired by using the same flights. It relies on a segment

network that ensures valid segment connections and a customized breath-first search with priority queue

(BFSPQ) to generate the first K feasible rosters with minimal cost. While generating rosters, the BFSPQ

simultaneously accounts for any work rule of an accumulative nature (e.g. total flight time, total duty time,

total number of calendar days, etc) over all levels (duty, pairing, and roster).

In the beginning of roster generation, we first build a segment network to ensure valid segment connec-

tions. In the segment network, each node encodes the location, time, and activity (arrival and departure).

Two nodes are connected if they either belong to the same segment or exhibit a valid connection that satisfies

both the minimum and maximum crew connection times.

To generate feasible rosters, we run the BFSPQ, which is based on the traditional breath-first search

algorithm by adding legality checks on work rules. During the execution of the algorithm, the work rules

are checked on the fly, and a priority queue is used to sort partially constructed rosters by their costs, which

are the same as the coefficients in the objective of the CRM, and consist of the deadhead cost and the flight

coverage bonus. Given a disrupted crew member and underlying original roster {s1, . . . , sR} of segments,

the inputs to BFSPQ are Sb = {s1, . . . , si−1}, Se = {sj+1, . . . , sR}, and S , which is a set of segments

that the BFSPQ can use to construct alternative rosters, and it consists of all flights that fall within the time

window defined by the arrival time of segment si−1 and the departure time of segment sj+1. Here, Sb and

Se are sequences of undisrupted segments. The algorithm starts from the same station as si−1 and finds all

possible connectible segments in S . When legality is checked, if adding a flight violates only the maximum

flying time, the flight is then used to deadhead the crew member in question. If appending Se to the last

segment of the partially constructed roster yields a feasible roster, the roster is stored. When a connectible



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 89

segment is found, the cost of the partially constructed roster is updated and added to the priority queue.

The algorithm repeats until either no more connectible segments are found in S or the maximum number

of rosters to be generated is reached. At the end, the algorithm returns the set of K feasible rosters with

minimum cost.

The major difference between the BFSPQ and a K shortest path algorithm is that the K shortest path

algorithm generally relies on augmenting the shortest path, backtracking from the end, or reversing edges

to reduce its running time, and hence, is neither simple nor efficient to check complicated work rules on

the fly. The implementation of Yen’s algorithm in Martins et al. (2000) and the K shortest path algorithm

in Eppstein (1999) are two such examples. We incorporated both implementations with rule checking.

However, the resulting longer running times render them unsuitable for our implementation. In the next

section, we discuss how feasible schedules are generated for each crew category.

ALGORITHMIC STRATEGY

The previous section specifies how to generate rosters for disrupted crew members. To obtain high quality

solutions, rosters of other crew members must be considered. Figure 3.3 illustrates our general algorithmic

strategy for roster generation, which is the bottleneck of the recovery process.

Disrupted Crew 
Members

Affected Crew 
Members

Reserves and 
Standbys

BFSPQ

Rolling Horizon 
BFSPQ

Find Suitable 
Rosters

Feasible Rosters

Feasible Rosters

Feasible Rosters

All Crew 
Members

Figure 3.3: Roster generation process.

We first categorize crew members by disrupted crew members, affected crew members, and reserve crew

members to reduce the running time for generating alternative rosters. Disrupted crew members are crew

members who rosters have at least one disrupted flight, and we generate rosters for them first. Affected crew

members are crew members whose rosters includes at least one flight that is part of a roster generated for

a disrupted crew member. The inclusion of the affected crew members further reduces the recovery cost

by allowing parts of their rosters to be swapped with disrupted rosters, and hence, provides more recovery



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 90

options for the disrupted crew members. Reserve crew members are necessary when no other option exists.

They do not have a roster and can be called to operate on understaffed flights that otherwise cannot depart.

For each crew category, a different strategy is applied to generate rosters. For each disrupted crew mem-

ber, we first directly apply the BFSPQ as described in the previous section with all connectible segments.

This algorithm starts with the shortest string in which si and sj are the first and last disrupted segments.

Then, string Sd, which consists of all segments in the rosters not in Sb ∪ Se is iteratively extended by

appending segments from Sb and Se until the required number of alternative rosters is reached.

Now, the generated rosters of disrupted crew members include segments of other crew members. All

such crew members are considered affected. For each affected crew member, Sd is defined as the shortest

sequence of segments on his or her roster that includes segments on generated rosters for disrupted crew

members. Since the number of alternative rosters heavily depends on the length of Sd, which could be very

long when it contains many flights that can be used to carry many different disrupted crew members, the

BFSPQ is iteratively applied with a rolling horizon time window for each affected crew member.

The rolling horizon version of BFSPQ is primarily designed to generate alternative feasible rosters that

minimally deviate from the original roster of the crew member in question, while mitigating the inefficiency

of the BFSPQ when Sd contains many segments. As the rosters of the affected crew members are originally

feasible, the aim of the rolling horizon BFSPQ is to efficiently generate some alternative rosters that may

improve the overall solution quality of the CRM. As a result of using the rolling time window, the generated

rosters are biased toward short local recovery. This contrasts to the direct application of BFSPQ on the

disrupted crew members whose alternative rosters are ensured of quality but take the algorithm a longer

time to find.

Let b be the index of the last segment before the first affected segment, let e be the index of the first

segment after the last affected segment, let R be the set of alternative rosters generated thus far, and let

ϕ be the threshold on the number of generated rosters above which the beginning of the rolling horizon

time window slides forward. The rolling horizon algorithm starts with a small rolling horizon time window,

where its beginning time is the arrival time of the bth segment, and its ending time is the departure time

of the (b + 1)th segment. The end of the rolling horizon time window is iteratively extended until ϕ many

rosters are found. Then, the rolling horizon time window is reset with the (b+ 1)th and (b+ 2)th segments,

and the procedure repeats. The algorithm stops when the end of the rolling horizon time window meets

the departure time of the eth segment. At the end, we restrict S to include only segments in the alternative



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 91

rosters generated thus far, and the BFSPQ is run again with this new set of segments to obtain the first K

alternative rosters. The algorithm is summarized in Algorithm 4.

Algorithm 4 Rolling Horizon BFSPQ

Require: {s1, . . . , sR}, b, e
1: Set b̄ = b, ē = b+ 1, R = R̄ = ∅
2: while ē ≤ e do
3: Set

• Sb = {s1, . . . , sb̄} and Se = {sē, . . . , sR}
• S to include all segments that depart after sb̄ and arrive before sē
• R̄ = BFSPQ(Sb, Se,S)

4: if |R̄| > ϕ or ē = e then
5: Move all strings in R̄ to R
6: b̄ = b̄+ 1
7: end if
8: ē = ē+ 1
9: end while

10: Set

• Sb = {s1, . . . , sb} and Se = {se, . . . , sR}
• S to include only segments in R and exclude segments in Sb ∪ Se

11: return BFSPQ(Sb, Se,S)

For each reserve crew member, we, instead of running the BFSPQ, construct feasible rosters based

on rosters already generated. For each feasible roster generated for a disrupted or affected crew member,

a feasible sequence (if exists) is extracted and assigned to the reserve crew member if all work rules are

satisfied. We do not attempt to construct feasible rosters by applying the BFSPQ directly, as we experienced

computationally that running the BFSPQ to generate rosters for the reserve crew members demands a long

running time without significantly improving the objective.

To further reduce the running time for generating rosters, we identify the dominating crew member, and

feasible rosters are only generated for the dominating crew member. A crew member is dominating if his/her

disrupted or affected sequence of segments completely covers disrupted or affected segments of other crew

members. Such dominating relationship always exists, as a disruption affecting a roster of a crew member

should also affect the rosters of other crew members. Once feasible rosters are generated for the dominating

crew member, all segments used for generating the rosters are extracted and used to generate feasible rosters

for each dominated crew member by running the BFSPQ.

Lastly, the BFSPQ is highly parallelized over disrupted and affected crew members. Since the lengths of

the disrupted or affected rosters are not the same, work load needs to be balanced to fully harvest the benefit



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 92

from multi-thread computing. Toward this end, we sort the dominating crew members by the number of

segments in the disrupted or affected region. By balancing the load, we are able to reduce the running time

by about 30%.

3.5 COMPUTATIONAL STUDY

In this section, we provide a comprehensive computational study. We compare our fully integrated ap-

proach with the partially integrated approach, which follows the same algorithm and is based on the same

implementation, except that only the schedule, aircraft, and passenger recovery problems are included in the

Benders framework. After terminating the Benders algorithm, a post-processing step is applied to find an

integral aircraft routing solution. Then, CRM is solved exactly once by using the same model and imple-

mentation. Since several airlines and a vendor solve the airline recovery problem by this partially integrated

approach, we compare the fully integrated approach with the current state-of-the-art in practice.

This comparison is different from Peterson et al. (2012) who study the improvement of the fully inte-

grated solution over a solution obtained by solving all resource recovery problems sequentially. Our results,

on the other hand, show if integrating the CRM, frequently regarded as the bottleneck in the recovery pro-

cess, is a profitable direction in terms of its associated marginal improvement and running time increase.

Because of the lack of itinerary data from our data provider, we only know the number of passengers

and the associated average fare at the flight level. As a result, we do not solve the PRM directly, but we

penalize passenger delays and itinerary cancellations in both our fully integrated solution and the partially

integrated solution. A passenger is considered delayed if the new arrival time of his/her flight is later than

the original arrival time. A passenger itinerary is canceled if the corresponding flight is canceled and no

alternative flight is provided. The penalties are subtracted from the objectives of the ARM and CRM.

All tested scenarios are constructed based on a real world data set with all costs and business rules. It is

a heavy hub-and-spoke network with 2 hubs, 3 equipments, 146 aircraft, 650 scheduled flights, 1300 crew

members, and 160 reserved crew members. The tested scenarios are based on closing the busiest hub by

one and two hours, and are summarized in Table 3.1 with their abbreviations listed in parenthesis. They are

selected to cover the busiest hours of the targeted airport. A scenario is considered easy when the number

of disrupted crew members at the end of the Benders algorithm in the partially integrated approach is small.

It turns out, as expect, that 1-hour scenarios are, in general, easier to be recovered, and the most challenging



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 93

scenario is 12 2. The recovery time window for all the scenarios starts from the end of the disruption until

6 a.m. next day. Hence, the later the disruption, less time we have for recovery.

Table 3.1: Single-hub closure scenarios

1-hour Scenarios 2-hour Scenarios

(12 1) 12:00 p.m. - 1:00 p.m. (11 1) 11:00 p.m. - 1:00 p.m.

(2 3) 2:00 p.m. - 3:00 p.m. (12 2) 12:00 p.m. - 2:00 p.m.

(5 6) 5:00 p.m. - 6:00 p.m. (2 4) 2:00 p.m. - 4:00 p.m.

(5 7) 5:00 p.m. 7:00 p.m.

Table 3.2 lists some of the most important cost parameters. Although the list is by no means comprehen-

sive, it contains important costs that drive the performance of the recovery solution. The first two bonuses

incentivize aircraft to be on their original routes and their mandatory maintenances to be covered. The last

two bonuses encourage crew members to cover as many flights as possible, and especially their originally

scheduled flights. On the other hand, deadhead usage is highly discouraged. A penalty is imposed for any

crew member not ending at his/her designated station by the end of the recovery horizon. A fixed cost is

incurred for any reserve crew called. Passenger goodwill is discounted from the recovery bonus when pas-

sengers are delayed, or itineraries are canceled. Additional penalty based on the average fare of the flight is

added for each passenger itinerary canceled.

Table 3.2: Important cost parameters

Bonus Penalty

Original Route Coverage 1,000 Deadhead 1,000

Maintenance Coverage 812 Crew Ending 20,000

Original Flight Coverage 500 Reserve 1,500

Other Flight Coveragea 150 Passenger Goodwill 1,000

We have conducted our computational study on a server with a 64-bit Window Server 2008 operating

system. Its CPU is Intel Xeon X5560 with 2 processors and six 2.8 GHz cores per processor. ILOG Cplex

12.3 is used for optimization, and OpenMP 2.0 is used for parallelization within the Visual Studio 2008 C++

implementation. However, for optimal performance, we only utilize four cores due to the restriction of the

cache memory per core. In our implementation, we stop the algorithm after 8 Benders iterations, since this

is the iteration at which the integrated solution is stable, and the running time is reasonable. The number

aBonus for covering flights that are not part of the original roster of a crew member.



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 94

of rosters to be generated is limited at 500 per each disrupted crew member and 300 per each affected crew

member.

Figure 3.4 shows the percentages of the objective, which we call revenue, improvements when the

integrated solution is used instead of the partially integrated solution.

-4% 

-2% 

0% 

2% 

4% 

6% 

8% 

10% 

12% 

14% 

16% 

5_6 2_3 12_1 5_7 2_4 12_2 11_1 

%
 o

f R
ev

en
ue

 Im
pr

ov
em

en
t 

Scenarios 

SRM ARM CRM Overall 

Figure 3.4: Percentages of revenue improvements for the SRM, ARM, CRM, integrated system.

We have the percentages broken down for each resource recovery problem. The objective value of the

ARM is expected to decrease after the CRM is integrated, since trade-offs between the resource recovery

problems are inevitable. However, we observe that by adding the CRM optimality cuts, we improve not

only the performance of the CRM, but also the performance of the ARM in many scenarios. This is due

to the fact that rosters are generated based on feasible routes given by the ARM solution. Thus, the CRM

optimality cuts should also guide the ARM to a higher recovery bonus. On the other hand, the objective

values of the SRM minus the optimal values of the Benders dummy variables show no improvement. This

implies that the SRM is degenerated and many alternative optimal solutions exist. The integrated recovery

algorithm iteratively finds from a pool of optimal SRM solutions a solution that yields the best recovery plan

for both the aircraft and crews. The line on the figure shows the percentage of overall improvements. While

improvements on 1-hour scenarios are not substantial, improvements on 2-hour scenarios are significant

(approximately 2% or more). The limited improvements observed from the 1-hour scenarios can be due

to the fact that disruptions in the scenarios can be easily fixed, e.g. after solving the SRM and ARM by

Benders decomposition, the remaining disrupted crew members are only a few. Hence, the benefits from

integrating the CRM are limited. For confidentiality reasons, we present only relative improvements. The



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 95

improvement in absolute value is measured based on the parameters provided by a solution vendor, and it

varies from $50, 000 to 1 million dollars per scenario. Figures 3.5 and 3.6 summarize two important cost

drivers.

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

N
um

be
r o

f C
an

ce
lle

d 
Fl

ig
ht

s 

Scenarios 

Integrated Partially Integrated 

Figure 3.5: Number of canceled flights.

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

N
um

be
r o

f D
is

ru
pt

ed
 C

re
w

 M
em

be
rs

 

Scenarios 

Integrated Partially Integrated 

Figure 3.6: Number of disrupted crews.

Figure 3.5 compares the numbers of the canceled flights from the two approaches. In all scenarios, our

approach reduces the number of canceled flights in the range of 1 to 10, where 10 fewer canceled flights is

from scenario 12 2, which covers the busiest hour of the airport on the selected day.

Figure 3.6 shows the numbers of the disrupted crew members. The change in the number of disrupted

crew members across scenarios ranges from -4 to 2, where 4 more disrupted crew members corresponds to

scenario 5 7, whose ARM solution is changed to a degree that it allows the CRM to significantly increase

the assignment bonus at the expense of having more disrupted crew members.



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 96

11_1 

12_2 

2_4 

5_7 

12_1 

2_3 

5_6 

75% 50% 25% 0% 0% 25% 50% 75% 
% of Disrupted Passengers Reduced 

Delayed Passengers Canceled Itineraries 

Figure 3.7: Percentage of delayed passengers and canceled itineraries.

Figure 3.7 shows the reductions of the delayed passengers and canceled itineraries in percentage. When

the fully integrated approach is applied, delayed passengers are reduced by 10% on average. The percentage

is higher when the disruption scenario is more challenging. On the other hand, we observe that canceled

itineraries are reduced by about 25% in the 1-hour scenarios, and about 55% in the 2-hour scenarios with

the exception that scenario 5 7 reduces the value by only about 3%. Both delayed passengers and canceled

itineraries are significantly reduced due to partly fewer canceled flights and partly the positive effect of the

Benders framework that allows the equipment, aircraft, and crew assignments to be iteratively adjusted for

a better recovery solution.

11_1 

12_2 
2_4 5_7 

12_1 

2_3 

5_6 

-40% 

-30% 

-20% 

-10% 

0% 

10% 

20% 

30% 

40% 

%
 o

f D
ea

dh
ee

ad
s 

Ch
an

ge
d 

Figure 3.8: Percentage of deadheads re-

duced.

0 500 1000 1500 2000 2500 3000 

11_1 

12_2 

2_4 

5_7 

12_1 

2_3 

5_6 

Running Time (seconds) 

Sc
en

ar
io

s 

Integrated Partially Integrated 

Figure 3.9: Running time comparisons.



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 97

Figure 3.8 shows the percentages of deadheads changed. Clearly, most scenarios do not reduce deadhead

usage except for scenarios 11 1 and 2 3. This implies that deadheads are not the improvement driver under

the default cost setting. Later in Figure 3.10, we show the impact on deadheads when the deadhead cost is

doubled.

Figure 3.9 shows the running time of the integrated solution for each scenario. The running times range

from 20 minutes up to 50 minutes. The harder the scenario is, more running time is needed, and about three

times more running time is required to solve our integrated recovery problem. Note that by increasing the

number of computer cores, we estimate that the running time can be reduced by half if the cache can be

enlarged to handle the memory demanding roster generation process.

We have increased the running time of the sequential approach by increasing the number of feasible ros-

ters for both the disrupted and affected crew members to be generated up to the point where the objective of

the CRM does not change anymore. We observe that the performance of the sequential solution by opening

up the number of rosters is improved by less than 1% overall in the 2-hour scenarios, and is not improved

for any 1-hour scenario. Hence, the partially integrated approach remains significantly outperformed by our

approach in all scenarios.

-5% 
0% 
5% 

10% 
15% 
20% 
25% 
30% 
35% 
40% 

Revenue 

Cancellation 

Disrupted Crew 

Reserve Deadhead 

Delayed Pax 

Canceled Pax 

High Coverage Bonus High Deadhead Cost Original Cost 

Figure 3.10: Results for different cost settings.

The same computational study is also conducted for two different cost settings: one with doubled cov-



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 98

erage bonuses (the original and other flight coverage revenues in Table 3.2), and one with doubled deadhead

cost. Figure 3.10 shows the average percentage reduced over all disruption scenarios for each key perfor-

mance indicator. The central red area indicates the percentage increased comparing to the partially integrated

solution. We observe that when the deadhead cost is doubled, deadhead reductions are almost doubled, and

when the coverage bonus is doubled, we obtain fewer cancellations and canceled itineraries. High coverage

bonus also discourages deadheads as it is more beneficial to cover more flights with the same number of

available crew members. Overall, the revenue improvement does not significantly deviate across the three

different cost settings.

Moreover, we evaluate the performance of our solution by shortening the recovery time window by

imposing the end of the recovery time window at 6 p.m. The revenue improvements are summarized in

Figure 3.11. Note that scenarios 5 6 and 5 7 are now essentially the same, and hence scenario 5 7 is not

included in the figure. Although the overall revenue improvements are less pronounced, the improvement

trend is similar to the one for the 24-hour recovery time window in Figure 3.4.

We have also tested if applying cuts differently will affect our results. We tried applying cuts every other

Benders iteration, the last iteration only, and the last 8 iterations only (with a total of 16 Benders iterations).

The performances were inferior.

-6% 

-4% 

-2% 

0% 

2% 

4% 

6% 

8% 

10% 

5_6 2_3 12_1 2_4 12_2 11_1 

%
 O

f R
ev

en
ue

 Im
pr

ov
em

en
t 

Scenarios 

SRM ARM CRM Overall 

Figure 3.11: Percentage of revenue improvement when the recovery time window is limited to 12 hours.



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 99

3.6 CONCLUSION

We have studied a fully integrated recovery problem as well as the Benders decomposition framework that

decomposes the problem into resource recovery problems. Many different and innovative modeling and

algorithmic strategies are proposed to include business requirements and to reduce the solution time. We

evaluated the performance of our proposed solution based on a real world data set provided by a major

solution vendor, and observed significant improvements over the partially integrated solution used by the

industry.

Our solution performs well on small disruption instances and significantly better on large disruption

instances. A fewer number of canceled flight, disrupted crew members, delayed passengers, and canceled

itineraries generally lead to a better integrated recovery solution. The harder and longer the disruption

scenario is, the more improvement we observed. Furthermore, our solution is robust to different cost settings,

and provides an improvement of 2.6% on average and 8% maximum, which accounts for up to one million

in saving per recovery. It does not only help airlines to reduce their recovery costs in the long run, but it also

allows them to make close-to-real-time recovery decisions whenever disruptions occur.

Although our solutions are significantly better, we have identified two possible research directions that

may further improve the fully integrated methodology. One direction is to adapt the splitting strategy of

ARM to CRM by having SRM to select alternative crew connections, so that the roster generation process

may not be necessary. This may require the SRM to select an alternative crew connection to satisfy for each

crew member. The other direction is to investigate if the total recovery cost and running time can be further

reduced by switching the order of the Benders subproblems. Some evidences can be found in Klabjan et al.

(2002) and Mercier et al. (2005). They are about resource planning, and it is unclear if similar performances

can be achieved when the underlying problem concerns operations recovery.



www.manaraa.com

100

REFERENCES

Abdelghany, K. F., Abdelghany, A. F., and Ekollu, G. (2008). An integrated decision support tool for airlines schedule

recovery during irregular operations. European Journal of Operational Research, 185(2):825 – 848. [cited at p. 73]

Amaruchkul, K., Copper, W. L., and Gupta, D. (2007). Single-leg air-cargo revenue management. Transportation

Science, 41(4):457–469. [cited at p. 50]

Amaruchkul, K., Copper, W. L., and Gupta, D. (2010). A note on air-cargo capacity contracts. Production and

Operations Management. http://dx.doi.org/10.1111/j.1937-5956.2010.01158.x. [cited at p. 49]

Barnhart, C., Boland, N. L., Clarke, L. W., Johnson, E. L., Nemhauser, G. L., and Shenoi, R. G. (1998). Flight string

models for aircraft fleeting and routing. Transportation Science, 32(3):208–220. [cited at p. 71]

Belobaba, P. P. and Weatherford, L. R. (1996). Comparing decision rules that incorporate customer diversion in

perishable asset revenue management situations. Decision Sciences Journal, 27(2):343–363. [cited at p. 17]

Bisaillon, S., Cordeau, J.-F., Laporte, G., and Pasin, F. (2011). A large neighbourhood search heuristic for the aircraft

and passenger recovery problem. A Quarterly Journal of Operations Research, 9(2):139–157. [cited at p. 73]

Bitran, G. and Caldentey, R. (2003). An overview of pricing models for revenue management. Manufacturing &

Service Operations Management, 5(3):203 – 229. [cited at p. 14]

Bratu, S. and Barnhart, C. (2006). Flight operations recovery: New approaches considering passenger recovery.

Journal of Scheduling, 9(3):279–298. [cited at p. 73]

Brumelle, S. L. and McGill, J. I. (1993). Airline seat allocation with multiple nested fare classes. Operations

Research, 41(1):127–137. [cited at p. 16, 17, 50]

Chen, L. and Homem-de-Mello, T. (2010). Re-solving stochastic programming models for airline revenue manage-

ment. Annals of Operations Research, 177(1):91–114. [cited at p. 17]

Chew, E.-P., Huang, H.-C., Johnson, E. L., Nemhauser, G. L., Sokol, J. S., and Leong, C.-H. (2006). Short-term

booking of air cargo space. European Journal of Operational Research, 174(3):1979 – 1990. [cited at p. 50]

Chunhua, G. (2007). Airline Integrated Planning and Operations. PhD thesis, Georgia Institute of Technology.

[cited at p. 73]



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 101

Cooper, W. L. (2002). Asymptotic behavior of an allocation policy for revenue management. Operations Research,

50(4):720–727. [cited at p. 15, 29, 30, 31]

Curry, R. E. (1990). Optimal airline seat allocation with fare classes nested by origins and destinations. Transporta-

tion Science, 24(3):193–204. [cited at p. 15, 16, 20, 24, 29, 43, 50, 111]

de Boer, S. V., Freling, R., and Piersma, N. (2002). Mathematical programming for network revenue management

revisited. European Journal of Operational Research, 137(1):72 – 92. [cited at p. 14]

DHL (2012). Volumetric weight. [Online; accessed 8-October-2012]. http://www.dhl.com/en/tools/

volumetric_weight_express.html. [cited at p. 53]

Eppstein, D. (1999). Finding the k shortest paths. SIAM Journal on Computing, 28(2):652–673. [cited at p. 89]

Fiig, T., Isler, K., Hopperstad, C., and Belobaba, P. P. (2010). Optimization of mixed fare structures: Theory and

applications. Journal of Revenue and Pricing Management, 9(1/2):152–170. [cited at p. 17]

Gallego, G., Li, L., and Ratliff, R. (2009). Choice-based emsr methods for single-leg revenue management with

demand dependencies. Journal of Revenue and Pricing Management, 8(2/3):207–240. [cited at p. 16, 17, 21, 29, 31, 32,

33, 34, 43, 111]

Hellermann, R. (2004). Capacity Options for Revenue Management: Theory and Applications in The Air Cargo

Industry. Springer, 1st edition. [cited at p. 49]

Higham, N. J. (2002). Computing the nearest correlation matrix - a problem from finance. IMA Journal of Numerical

Analysis, 22(3):329–343. [cited at p. 62]

Higle, J. L. (2007). Bid-price control with origin-destination demand: A stochastic programming approach. Journal

of Revenue and Pricing Management, 5(4):291–304. [cited at p. 17]

Karaesmen, I. (2001). Three Essays on Revenue Management. PhD thesis, Columbia University. [cited at p. 49]

Kasilingam, R. G. (1997). Air cargo revenue management: Characteristics and complexities. European Journal of

Operational Research, 96(1):36 – 44. [cited at p. 49]

Klabjan, D. (2005). Column generation (chapter 16): Large-scale models in the airline industry. Springer, pages 168

– 196. [cited at p. 76]

Klabjan, D., Johnson, E. L., Nemhauser, G. L., Gelman, E., and Ramaswamy, S. (2002). Airline crew scheduling

with time windows and plane-count constraints. Transportation Science, 36(3):337 – 348. [cited at p. 99]

Lettovsky, L. (1997). Airline Operations Recovery: An Optimization Approach. PhD thesis, Georgia Institute of

Technology. [cited at p. 71, 72, 73, 74]



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 102

Levin, Y., Nediak, M., and Topaloglu, H. (2012). Cargo capacity management with allotments and spot market

demand. Operations Research, 60(2):351–365. [cited at p. 50]

Levina, T., Levin, Y., McGill, J., and Nediak, M. (2011). Network cargo capacity management. Operations Research,

59(4):1008–1023. [cited at p. 50]

Littlewood, K., editor (1972). Forecasting and control of passenger bookings, volume 12. The 12th AGIFORS

Symposium, Nathanya, Israel. [cited at p. 16]

Luo, S., Çakanyıldırım, M., and Kasilingam, R. G. (2009). Two-dimensional cargo overbooking models. European

Journal of Operational Research, 197(3):862 – 883. [cited at p. 50]

Mansi, R., Hanafi, S., Wilbaut, C., and Clautiaux, F. (2010). Disruptions in the airline industry: math-heuristics

for re-assigning aircraft and passengers simultaneously. Accepted in European Journal of Industrial Engineering.

[cited at p. 74]

Martins, E., Queir, E., Martins, V., Margarida, M., and Pascoal, M. M. B. (2000). A new implementation of Yen’s

ranking loopless paths algorithm. 4OR, pages 121–133. [cited at p. 89]

McGill, J. I. and Van Ryzin, G. J. (1999). Revenue management: Research overview and prospects. Transportation

Science, 33(2):233. [cited at p. 14]

Mercier, A., Cordeau, J.-F., and Soumis, F. (2005). A computational study of Benders decomposition for the inte-

grated aircraft routing and crew scheduling problem. Computers & Operations Research, 32:1451–1476. [cited at p. 99]

Pak, K. and Dekker, R. (2004). Cargo revenue management: Bid-prices for a 0-1 multi knapsack problem. ERIM

report series research in management, Rotterdam School of Management, Erasmus Universiteit Rotterdam, The

Netherlands. [cited at p. 50]

Palpant, M., Boudia, M., Robelin, C.-A., Gabteni, S., and Laburthe, F. (2009). ROADEF 2009 challenge: Disruption

management for commercial aviation. [Online; accessed 3-August-2012]. http://challenge.roadef.org/

2009/files/challenge_en.pdf. [cited at p. 73]

Peterson, J. D., Sőlveling, G., Johnson, E. L., Clarke, J.-P., and Shebalov, S. (2012). An optimization approach to

airline integrated recovery. Transportation Science, Articles in Advance:1–19. [cited at p. 71, 72, 74, 87, 92]

Popescu, A. (2006). Air Cargo Revenue and Capacity Management. PhD thesis, Georgia Institute of Technology.

[cited at p. 49]

Powell, W., Ruszczynski, A., and Topaloglu, H. (2004). Learning algorithms for separable approximations of discrete

stochastic optimization problems. Mathematics of Operations Research, 29(4):814–836. [cited at p. 24, 25, 27]



www.manaraa.com

CHAPTER 3. AIRLINE INTEGRATED RECOVERY 103

Powell, W. B. (2007). Approximate Dynamic Programming: Solving the Curses of Dimensionality. Wiley Series in

Probability and Statistics. Wiley-Interscience, 1st edition. [cited at p. 20, 26]

RITA (2012a). On-time performance - flight delays at a glance. [Online; accessed 3-August-2012]. http://www.

transtats.bts.gov/HomeDrillChart.asp. [cited at p. 70]

RITA (2012b). U.S. air carrier traffic statistics. [Online; accessed 8-October-2012]. http://www.bts.gov/

xml/air_traffic/src/datadisp.xml. [cited at p. 44]

Robinson, L. W. (1995). Optimal and approximate control policies for airline booking with sequential nonmonotonic

fare classes. Operations Research, 43(2):252–263. [cited at p. 19]

Sherali, H. D., Bish, E. K., and Zhu, X. (2006). Airline fleet assignment concepts, models, and algorithms. European

Journal of Operational Research, 172(1):1 – 30. [cited at p. 76]

Slager, B. and Kapteijns, L. (2004). Implementation of cargo revenue management at KLM. Journal of Revenue &

Pricing Management, 3(1):80–90. [cited at p. 49]

Talluri, K. and van Ryzin, G. (1998). An analysis of bid-price controls for network revenue management. Manage-

ment Science, 44(11):1577–1593. [cited at p. 14, 19]

Talluri, K. and Van Ryzin, G. (1999). A randomized linear programming method for computing network bid prices.

Transportation Science, 33(2):207–216. [cited at p. 15, 20, 32]

Talluri, K. and van Ryzin, G. (2004). The Theory and Practice of Revenue Management. International Series in

Operations Research & Management Science. Springer, 1st edition. [cited at p. 20, 50]

Topaloglu, H. (2009). On the asymptotic optimality of the randomized linear program for network revenue manage-

ment. European Journal of Operational Research, 197(3):884–896. [cited at p. 32]

van Ryzin, G. J. and McGill, J. I. (2000). Revenue management without forecasting of optimization: An adaptive

algorithm for determining airline seat protection levels. Management Science, 46(6):760–775. [cited at p. 16]

Williamson, E. L. (1992). Airline Network Seat Inventory Control: Methodologies and Revenue Impacts. PhD thesis,

Massachusetts Institution of Technology, Cambridge, Massachusetts. [cited at p. 14]

Wollmer, R. D. (1992). An airline seat management model for a single leg route when lower fare classes book first.

Operations Research, 40(1):26–37. [cited at p. 16, 21, 31, 34, 43, 50]

Zhang, D. and Adelman, D. (2009). An approximate dynamic programming approach to network revenue manage-

ment with customer choice. Transportation Science, 43(3):381–394. [cited at p. 17]



www.manaraa.com

104

Appendix A

CHAPTER 1: APPENDIX

A.1 PROOFS

A.1.1 PROPOSITION 1

Proof. For a given itinerary i, suppose the number of remaining seats ξi and a matrix of observed accumu-

lated upsells ηi are given at time c (note that class and time share the same index by our low-to-high fare

arrival order assumption). Let us add a superscript to both ξi and ηi to represent the number of remaining

seats and observed accumulated upsells at time c. We then rely on the following relationships to prove the

proposition:

ξci −Πic−1 = xic + zic+1 for l ≤ c (A.1)

and

ϕil = ηcil +

c∑
c′>l

Uic′l for l ≤ c. (A.2)

Equation (A.1) describes the number of seats available for class c. Its LHS is the difference between the

remaining number of seats available for all classes and the number of seats protected for all higher classes

c − 1, . . . , 1, and hence, it is the remaining number of seats available for class c. Note that ξli is a random

variable for classes l = 1, . . . , c − 1, and it is always no less than Πil−1 by the definition of N (xi), i.e.

ξci =
∑c

l=1 xil = Πic ≥ Πic−1, and by the way that the number of remaining seats is determined for

Vil−1(·, ·, ·), i.e. ξli −min{ξli − Πil−1, Dil + ηlil} ≥ ξli − ξli + Πil−1 ≥ Πil−1. On the other hand, the RHS

is the number of seats reserved for class c plus the total accumulated empty seats from class c+1, and thus,

is also the remaining number of seats available for class c. Now, zic+1 is a random variable. Using the fact

that Πic =
∑c

c′=1 xic′ , equation (A.1) also implies

ξc−1
i =

∑
c′≤c−1

xic′ + zic. (A.3)



www.manaraa.com

APPENDIX A. CHAPTER 1: APPENDIX 105

Equation (A.2) describes how upsells are accumulated to other higher classes given the observed upsells

ηi. Its LHS ϕil is the number of total upsells to class l on itinerary i by our definition. On the RHS, ηcil is the

given number of total upsells to class l in the beginning of time period c, and
∑c

c′>l Uic′l is the accumulated

upsells from classes c, . . . , l + 1. Hence, adding them together yields the total number of upsells to class l.

Note that (A.2) implies both

ηcic = ϕic (A.4)

and

ηc
i +Uic = ηc−1

i , (A.5)

and if initial upsells are not given, equation (A.2) is essentially the same as constraint (1.8) for class l.

We prove the proposition by induction. For the base case when c = 1, we have Vi1(∅, ξ1i ,η1
i ) =

�[ri1min{ξ1i , Di1 + η1i1}] = �[ri1min{xi1 + zi2, Di1 + ψi1}]. Suppose Vic−1(Π
c−2
i , ξc−1

i ,ηc−1
i ) =

�[
∑c−1

c′=1 ric′ min{xic′ + zic′+1, Dic′ + ψic′}]. We have

Vic(Π
c−1
i , ξci ,η

c
i ) =�[ricmin{ξci −Πic−1, Dic + ηcic}

+ Vic−1(Π
c−2
i , ξci −min{ξci −Πic−1, Dic + ηcic},

ηc
i + qic(Dic − (ξci −Πic−1 − ηcic)

+),pi(c), c)]

=�

[
ricmin {xic + zic+1, Dic + ψic}

+ Vic−1

(
Πc−2

i ,
∑

c′≤c−1

xic′ + xic + zic+1 −min {xic + zic+1, Dic + ψic} ,

ηc
i + qic

(
Dic − (xic + zic+1 − ψic)

+ ,pi(c), c
))]

=�

[
ricmin {xic + zic+1, Dic + ψic}

+ Vic−1

(
Πc−2

i ,
∑

c′≤c−1

xic′ + (xic + zic+1 −Dic − ψic)
+,

ηc
i + qic

(
Dic − (xic + zic+1 − ψic)

+ ,pi(c), c
))]

=�
[
ricmin {xic + zic+1, Dic + ψic}+ Vic−1

(
Πc−2

i , ξc−1
i ,ηc

i +Uic

)]
=�

[
c∑

c′=1

ric′ min {xic′ + zic′+1, Dic′ + ψic′}
]
.

The second equality is by (A.1) and (A.4). The fourth equality is by definitions (1.6) and (1.7), and equations

(A.2) and (A.3). The last equality is by (A.5) and our induction assumption on c− 1. Recall that we do not



www.manaraa.com

APPENDIX A. CHAPTER 1: APPENDIX 106

have to consider the case when ξci < Πic−1 as ξci ≥ Πic−1 by mapping N (xi)

A.1.2 LEMMA 1

Proof. We define D̄j to be the expected demand for product j, (xP , zP ) to be an optimal solution to P (K),

and xSP to be an optimal solution to SP (K). We prove the lemma by showing that both SP (K) ≥ P (K)

and P (K) ≥ SP (K) hold.

1. Suppose we are given (xP , zP ) an optimal solution to P (K).

a) If zPic = 0 for all c ∈ Ci and i ∈ I , it is easy to see that the solution is also feasible to SP (K).

b) If zPic > 0 for some c ∈ Ci and i ∈ I , suppose that c̄ is the lowest class such that zPic̄ > 0 for

itinerary i, it must be then the case that the number of allocated seats for class c̄ is more than

necessary, i.e. xPic̄ > D̄ic̄. We can then remove seats from xPic̄ until either zPic̄ = 0, or there exists

a higher class c̃ < c̄ such that one accepted booking for class c̃ has to be rejected due to too

few empty seats from lower classes. In the latter case, the removed seats from class c̄ is added

to class c̃ to maintain the same number of the accepted bookings. By repeating this procedure

for the remaining classes in the low-to-high fare arrival order for each itinerary, we can obtain a

new solution (x̄P , z̄P ) that yields the same objective value and has z̄Pic = 0 for all c ∈ Ci and

i ∈ I . Since neither the total allocation to each itinerary has been increased nor the number of

accepted bookings has been reduced, such a solution is feasible to SP (K).

In both cases, the solutions are feasible to SP (K), and we have SP (K) ≥ P (K).

2. Suppose we are now given xSP an optimal solution to SP (K).

a) For itinerary i, if all D̄ic ≥ xSPic , then the corresponding zi computed using (1.9) is a vector with

zeros. Thus, the solution (xSP , z = 0) is feasible to P (K).

b) For itinerary i, suppose Ci is a set of classes with D̄ic̃ < xSPic̃ for each c̃ ∈ Ci.
i. If we have D̄ic = xSPic for all c /∈ Ci, we can then reduce xSPic̃ until it is equal to Dic̃ for all

c̃ ∈ Ci. The resulting solution does not change the original objective value and has zi = 0.

Hence, it is also feasible to P (K).

ii. If we have D̄ic̄ > xSPic̄ for any c̄ /∈ Ci, then solution xSP
i is not optimal, since we can

extract a seat from any one of the classes in Ci and add the extracted seat to class c̄ to obtain

a higher objective value. It contradicts our optimality assumption on xSP .



www.manaraa.com

APPENDIX A. CHAPTER 1: APPENDIX 107

In all cases, we show that either xSP can be converted to a feasible solution to P (K) or xSP is not

optimal to induce a contradiction, and hence, we have SP (K) ≤ P (K) as required.

A.1.3 LEMMA 2

Proof. We refer to HL as high-to-low fare arrival order, LH as low-to-high fare arrival order, and R as

random arrival order. Let Do be a demand sample with arrival order o. We have the following observations

Observation 1. We have RP (K)(DHL) ≥ RP (K)(DR) ≥ RP (K)(DLH).

Proof. This is based on the fact that seats occupied by low-yield passengers in the LH arrival order can be

given to high-yield passengers in both the R and HL arrival orders. When the arrival order is HL, all seats

will first be filled with high-yield passengers before low-yield passengers are considered. When the arrival

order is R, some of the seats allocated to low-yield classes will be sold to high-yield passengers first. When

the arrival order is LH , the seats will be sold to low-yield passengers first. Hence, we can obtain the stated

bounding properties.

Observation 2. We have RSP (K)(DHL) = RSP (K)(DR) = RSP (K)(DLH).

Proof. This is based on the fact that the partitioned allocation of SP (K) is arrival order independent. Each

class of passengers has its own allocation. Changing merely the arrival order without changing the magni-

tude of the demand does not change the number of passengers that we accept using any partitioned allocation

of SP (K).

Now, we are ready to prove the lemma. Suppose xπ is an optimal solution to problem π, and zπ are the

extracted empty seats based on the optimal solution to problem π. Given both an optimal solution (xP , zP )

to problem P (K) and an optimal solution xSP to problem SP (K) with zSP computed using (1.9), we have

RP (K)(DHL) ≥ RP (K)(DR) ≥ RP (K)(DLH) =
∑
i∈I

∑
c∈Ci

ricmin{xPic + zPic+1, D
LH
ic }

≥
∑
i∈I

∑
c∈Ci

ricmin{xSPic + zSPic+1, D
LH
ic }

≥
∑
i∈I

∑
c∈Ci

ricmin{xSPic , DLH
ic }

= RSP (K)(DLH) = RSP (K)(DR) = RSP (K)(DHL).



www.manaraa.com

APPENDIX A. CHAPTER 1: APPENDIX 108

The first several inequalities are due to our first observation. On the R.H.S, the first equality is due to the

definition of P (K), and the first inequality is due to the optimality of (xP , zP ). The second inequality

is due to the fact that zSPic+1 ≥ 0 for all c ∈ Ci and i ∈ I , and the last several equalities are due to

the definition of SP (K) and the last observation. Hence, we have RP (K)(DR) ≥ RSP (K)(DR), which

implies �RP (K)(DR) ≥ �RSP (K)(DR).

Lastly, the inequality of �RSP (K)(DR) ≥ �RDLP (K)(DR) is clear, since we have

RSP (K)(DR) = RSP (K)(DHL)

=
∑
i∈I

∑
c∈Ci

ricmin{xSPic , DHL
ic }

≥
∑
i∈I

∑
c∈Ci

ricmin{�xDLP
ic �, DHL

ic }

= RDLP (K)(DHL) = RDLP (K)(DR),

where �x� is the flooring operation that takes the largest integer not exceeding x. The inequality is due to

the optimality of xSP over all partitioned allocation policies.

A.2 ALGORITHMS

A.2.1 UPSELL REVENUE ESTIMATION ALGORITHM

The upsell revenue estimation algorithm estimates the upsell revenue given a set of demand samples and

class-level partitioned allocation. It heavily relies on the recursive structure of (1.6) and (1.7), and takes

the set of class-level partitioned allocation levels {xc}, the set of demand samples {ζnc }, the set of upsell

probabilities {pcc}, and returns the average revenue over all demand samples, and the corresponding number

of rejected bookings and upsells.

Let αn
c be a binary variable that indicates if a class-c booking is rejected, let βn

c be a binary variable that

indicates if an upsell to class c is rejected due to insufficient allocated seats, and let γncc′ be a binary variable

that indicates if a rejected class-c booking successfully upsells to class c′. These three indicators are used

to store information for the upsell margin estimation algorithm (Algorithm 6, presented later) to efficiently

and marginally estimate the marginal revenue if an additional seat is given to any one of the classes. The

algorithm is summarized in Algorithm 5.



www.manaraa.com

APPENDIX A. CHAPTER 1: APPENDIX 109

Algorithm 5 Upsell revenue estimation algorithm

Require: xc for c ∈ C, pcc′ for c, c′ ∈ C, and ζnc for c ∈ C and n = 1, . . . N .

1: Set r = 0, αn
c = 0, βn

c = 0, and γncc′ = 0 for c, c′ ∈ C and n = 1, . . . , N .

2: for each demand sample do
3: Initialize z = 0, r′ = 0, and ucc′ = 0 for c, c′ ∈ C.

4: for c = |C|, . . . , 1 do
5: ϕ =

∑|C|
c′=c+1 uc′c.

6: r′ = r′ + rcmin{xc + z, ζnc + ϕ}.

7: if ζnc > {xc + z − ϕ}+ then
8: αn

c = 1.

9: if c is not the highest class then
10: Generate {ucc′}c′=1,...,|C| based on B(ζnc − (xc + z − ϕ)+,p(c)).
11: for c′ = 1, . . . , |C| do
12: if ucc′ > 0 then
13: γcc′ = 1
14: end if
15: end for.

16: end if
17: end if
18: if ϕ > xc + z then
19: βn

c = 1.

20: end if
21: z = (xc + z − ϕ− ζnc )

+.

22: end for
23: r = r + r′/N .

24: end for
25: return r, α, β, and γ.

For each demand sample, the algorithm starts from the lowest class and computes the total upsell to

other classes. Revenue is collected according to (1.5) in step 6. If there exists a rejected booking in class

c, αk
c is set to one. If c is not the highest class, and c′ is the class that the rejected type-c booking is

upselling to, γcc′ is set to one. The algorithm then checks if upsells to class c occupy all seats allocated

to class c. If it is the case, βk
c is set to one to record the fact that there exists at least one rejected upsell

to class c. The three variables α, β, and γ record information required to compute the marginal revenue

in margin estimation algorithm. By recording these rejection and upsell information, we can, instead of

computing the finite differences based on the estimated revenue for each class when one more seat is added,

reduce the number of algorithmic operations by first computing the base revenue (before a seat is added)

and marginally estimating the marginal revenues for all classes. This reduces the running time significantly

when the number of classes is high. At the end, the algorithm updates the number of empty seats available

for higher classes using (1.6) in step 21.



www.manaraa.com

APPENDIX A. CHAPTER 1: APPENDIX 110

A.2.2 MARGIN ESTIMATION ALGORITHM

The margin estimation algorithm computes the revenue margin if one more seat is given to a particular

class in question. All necessary information to compute the margin is encoded in variables α, β, and γ

(see Appendix A.2.1 for definitions). It requires the same inputs as the upsell revenue estimation algorithm

(Algorithm 5) without the set of demand samples. In addition, the class in question ĉ is also needed to

indicate to which class the seat should be added in order to compute the corresponding marginal revenue.

The algorithm is summarized in Algorithm 6.

Algorithm 6 Margin estimation algorithm

Require: ĉ, xc for c ∈ C, {αn
c }, {βn

c }, and {γncc′} for c, c′ ∈ C and n = 1, . . . , N .

1: Initialize m = 0.

2: for n = 1, . . . , N do
3: Initialize m′ = 0.

4: if βn
ĉ = 1 then

5: m′ = rĉ.
6: else
7: for c′ = c, . . . , 1 do
8: if αn

c′ = 1 then
9: c̃ = maxc=c′−1,...,1{γnc′c ≥ 1}

10: if c̃ exists then
11: m′ = rc′ − rc̃.
12: else
13: m′ = rc′ .
14: end if
15: go to step 19.

16: end if
17: end for
18: end if
19: Set m ← m+m′/N .

20: end for
21: return m

The margin estimation algorithm starts with checking if there exists a rejected upsell from any lower

classes to class ĉ due to insufficient allocated seats. If a rejected upsell exists and one more seat was given,

the rejected upsell should have been captured instead of being rejected. The algorithm then returns the fare

of class ĉ in step 5. If such a rejected upsell does not exist, then for any higher classes c′ = 1, . . . , ĉ− 1, the

algorithm checks both if there exists a rejected booking and if such a rejected booking results in an upsell. If

both conditions are satisfied, the algorithm adjusts the margin according to step 11. This reflects the fact that

if one more seat was allocated to class ĉ, the upsell should have not been occurred due to the nesting nature



www.manaraa.com

APPENDIX A. CHAPTER 1: APPENDIX 111

of the allocation policy. Therefore, the resulting marginal revenue should be non-positive. Otherwise, if an

upsell cannot be found, the margin is set to be the fare of class c′ in step 13.

A.2.3 EMSR-UPSELL ALGORITHM

The EMSR algorithm takes the number of total allocated seats y, a set of upsell probabilities p, the probabil-

ity that a rejected class-c booking ever upsells θc =
∑c−1

c′=1 pcc′ , and the average fare over all classes above

or equal to class c qc =
∑c

c′=1 rc�Dc/
∑c

c′=1�Dc. It returns a partitioned allocation and an approximated

revenue margin for each itinerary allocation level. The algorithm is summarized in Algorithm 7.

Algorithm 7 EMSR-upsell algorithm

Require: y, pcc′ for c, c′ ∈ Ci, and θc and qc for c ∈ C.

1: Initialize Π = 0 and S′
s = 0 for s = 0, . . . , y.

2: for c = 1, . . . , |C| do
3: for s = Π, . . . , y do
4: S′

s = rc(1− Fc(s− Π)) +
∑y−Π

s′=0 fc(s
′)Sy−s′ , where Fc is the c.d.f. of class-c demand, and fc is

the p.d.f. of class-c demand.

5: end for
6: if c is not the lowest class then
7: Π′ = argmins=Π,...,y{(rc+1 − θc+1qc) ≥ S′

s(1− θc+1)}.

8: Ss = S′
s for s = Π, . . . , y.

9: xc = max{Π′ −Π, 0}.

10: Π = Π′.
11: else
12: Ss = S′

s for s = 0, . . . , y.

13: end if
14: end for
15: return x = P(Π, y), S.

The algorithm computes the marginal revenue based on the optimality conditions in Curry (1990). Once

the marginal revenues are computed, the optimal protection level is determined for the class in question

based on the adapted fare-adjusted criterion in Gallego et al. (2009) in step 8. The slope vector is then

updated, and the corresponding partitioned allocation is computed.

A.3 TABLES

This section includes all results used to create the figures in the main document. Table A.1 shows the running

time of the upsell heuristic (Algorithm 2) for each number of classes and demand (λ) we tested. In general,

the average running time increases when the number of classes and demand increase.



www.manaraa.com

APPENDIX A. CHAPTER 1: APPENDIX 112

Table A.1: Average running time of the upsell heuristic and the associated demand factor

Average Running Time (s) Average Demand Factor

|C|\λ 10 20 30 40 50 10 20 30 40 50

2 21.61 31.93 36.36 37.52 36.95 0.48 0.97 1.45 1.94 2.42

3 8.95 18.28 30.56 42.07 49.94 0.50 1.01 1.51 2.01 2.52

4 18.97 35.26 52.70 68.25 82.66 0.52 1.04 1.55 2.07 2.59

5 32.33 57.19 82.19 106.25 124.61 0.53 1.05 1.58 2.11 2.64

6 51.95 87.38 119.88 150.91 173.12 0.54 1.07 1.61 2.14 2.67

7 69.53 117.82 163.87 203.67 236.21 0.54 1.08 1.62 2.17 2.71

8 99.63 159.36 211.73 259.14 295.22 0.55 1.09 1.64 2.18 2.72

9 112.35 193.95 269.92 332.24 382.36 0.55 1.10 1.65 2.20 2.75

10 142.37 235.57 317.42 390.32 450.86 0.55 1.10 1.66 2.21 2.76

Table A.2 shows the minimum, average, and maximum demand factors over all flights for each demand

multiplier. When the demand multiplier is 0, the average demand factor is 80% representing that the network

is 80% full. When the demand factor is above 100%, the number of bookings is more than the number of

seats available.

Table A.2: Minimum, average, and maximum demand factors over all flights for different demand multipli-

ers

Demand Multiplier min avg max

-0.4 0.02 0.48 1.18

-0.2 0.03 0.65 2.13

0 0.03 0.8 2.4

0.2 0.04 0.96 2.81

0.4 0.06 1.1 2.97

Table A.3 shows the average percentage of revenue improvement by using the proposed nested allocation

policy instead of the RLP bid-prices for each demand multiplier and upsell probability multiplier. The

average is taken over all generated demand sample paths, one sample path for each simulation experiment.



www.manaraa.com

APPENDIX A. CHAPTER 1: APPENDIX 113

Table A.3: Average percentage of revenue improvement by using the nested allocation policy.

Upsell Probability Multiplier\ Demand Multiplier -0.4 -0.2 0 0.2 0.4

0 -0.33% -0.26% -0.11% 0.28% 0.63%

0.1 -0.33% -0.19% 0.12% 0.60% 1.13%

0.2 -0.39% 0.08% 0.56% 1.34% 2.13%

0.3 0.30% 0.35% 0.90% 2.12% 3.25%

0.4 1.62% 1.69% 2.29% 3.53% 5.09%

0.5 3.64% 4.38% 4.64% 5.92% 7.96%

0.6 6.76% 8.50% 8.31% 9.90% 11.81%

0.7 13.64% 14.92% 15.36% 16.41% 18.06%

0.8 21.67% 23.65% 24.32% 24.70% 25.77%

0.9 30.77% 33.21% 32.75% 32.72% 34.06%



www.manaraa.com

114

Appendix B

CHAPTER 2: APPENDIX

B.1 ROLLING HORIZON IMPLEMENTATION OF THE RISK NEUTRAL PROB-

LEM

We describe the modifications made to the risk neutral problem so that it can be solved in a rolling horizon

manner. The modifications are based on adding a time dimension to the decision variables and coefficients.

To describe the problem, in addition to the notations defined for CAP, we add the following:

• D(t, t) set of demand units that can be shipped between time t and t,

• T (D(t, t), f) set of time periods in which flight f can be used to carry demand in D(t, t),

• wft total consumed weight on flight f by time t,

• vft total consumed volume on flight f by time t,

• nfpt total number of type-p positions consumed on flight f by time t,

• ytfpu (integer) number of type-u ULDs assigned to type-p position on flight f and date t. Note that∑
t∈T ytfpu = yfpu, which is the total number of type-p positions required to hold all assigned type-u

ULDs.

The rolling horizon version of RNP is

max
∑

d∈D(t,t)

∑
i∈ID(d)

∑
u∈UD(d)

rdiρ
w
duxdiu

∑
d∈D(t,t)

∑
i∈IDF (d,f)

∑
u∈UD(d)

ρwduxdiu+

∑
p∈P (f)

∑
u∈UP (p)

∑
t∈T (D(t,t),f)

τwu ytfpu ≤ wf − wft−1 f ∈ F (B.1)



www.manaraa.com

APPENDIX B. CHAPTER 2: APPENDIX 115

∑
d∈D(t,t)

∑
i∈IDF (d,f)

∑
u∈UD(d)

ρvduxdiu+

∑
p∈P (f)

∑
u∈UP (p)

∑
t∈T (D(t,t),f)

τ vuytfpu ≤ vf − vft−1 f ∈ F (B.2)

∑
d∈D(t,t)

∑
i∈IDF (d,f)

xdiu ≤
∑

p∈P (f)

ytfpu t ∈ T (D(t, t), f), u ∈ UF (f), f ∈ F (B.3)

∑
t∈T (D(t,t),f)

∑
u∈UP (p)

ρpuytfpu ≤ nfp − nfpt−1 p ∈ P (f), f ∈ F (B.4)

Constraints (B.1), (B.2), and (B.4) are similar to constraints (2.3), (2.4), and (2.6), which are the upper

bounds on the remaining weight, volume, and number of positions respectively. Constraints (B.3) are the

same as constraints (2.5) with a time dimension added.



www.manaraa.com

116

VITA

Chan Seng (Bill) Pun, the middle child of Pun Wai and Chan Hang Chon, was born in Macau SAR, where

he completed his high school diploma before he continued his undergraduate education in the United States.

In June 2007, he received his bachelor degree in the department of Industrial and Systems Engineering from

the University of Washington, Seattle, and moved to Chicago to pursue a doctorate in Industrial Engineering

and Management Sciences at Northwester University majoring in optimization. His expertises include rev-

enue management, approximate dynamic programming, large scale optimization, parallel computing, and

business intelligence. In November 2012, he moved to Dallas, Texas to work for Sabre Holdings as a senior

operations research consultant. More information is available at http://www.billpun.com.


